Ken Nakamura’s lab studies mitochondria, the “power centers” inside each cell that convert nutrients into ATP, a form of energy the cell can use. The lab has two broad, intertwined objectives. The first is to understand how mitochondria and energy metabolism normally support the function of healthy brain neurons. The second is to understand how disruptions in mitochondrial function and metabolism contribute to neurodegenerative diseases, especially Parkinson’s disease, Alzheimer’s disease, and mitochondrial disorders, and to use these insights to develop new therapeutic approaches that boost energy levels in vulnerable cells.
Disease Areas
Areas of Expertise
Lab Focus
Research Impact
Neurons have long been known to rely heavily on mitochondrial energy production, but scientists have lacked the tools to understand the mechanisms of this dependence. Nakamura’s lab has developed tools to monitor ATP production and study metabolism in normal and diseased neurons, and used them to show that energy failure can result from an imbalance between excessive energy consumption due to increased neural activity and insufficient production. They have also developed cutting-edge approaches to track the fates of individual mitochondria in neurons over time, and used them to make important discoveries about the mitochondrial life cycle in neurons and how it is disrupted in Parkinson’s disease.
Nakamura’s group also provided the first comprehensive map of mitochondrial genes and pathways that maintain cellular energy levels. ATP is the central energy carrier, but the pathways that regulate ATP levels are not systematically understood. The team’s studies provide insight into which diseases may act through energy failure and identify new therapeutic strategies to correct energy failure in these diseases.
Professional Titles
Associate Investigator, Gladstone Institutes
Professor, Department of Neurology, UC San Francisco
Bio
Ken Nakamura is an associate investigator at Gladstone Institutes, and a professor of neurology at UC San Francisco (UCSF). Nakamura earned his bachelor’s degree in chemistry and biological sciences from Cornell University, and his MD and PhD in neurobiology from the University of Chicago, Pritzker School of Medicine. His thesis work in the laboratory of Un Kang focused on the role of oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson’s disease. Nakamura then completed an internship in internal medicine and neurology residency at UCSF, and a subsequent clinical fellowship in movement disorders at UCSF, where he continues to treat patients. He also completed a postdoctoral fellowship with Robert Edwards at UCSF, investigating the role of a small protein named alpha-synuclein in the development of Parkinson’s disease. Nakamura’s long-term goal is to understand how and why neurodegenerative diseases lead to the death of selective neuronal populations, and to develop new therapeutic strategies to treat them.
Why Are You Dedicated to Discovery?
“Clinical trials attempting to modify Parkinson’s progression have all failed so far because we didn’t have a good enough basic science understanding of why the disease occurs; we need to develop that understanding to find effective therapies.”
Honors and Awards
2022 American Society for Clinical Investigation
2016 Jon Stolk Award in Movement Disorders for Young Investigators, American Academy of Neurology
2008 Burroughs Wellcome Fund Career Award for Medical Scientists
2001 Steven Lukes Memorial Prize, University of Chicago
1999 American Academy of Neurology Extended Neuroscience Award
Publications
Contact
Ken Nakamura
Email
415.734.2550
Erica Delin
Senior Administrative Specialist
415.734.2516
Email