The Histology and Light Microscopy Core provides technical assistance, training, consultation, and assistance with all aspects of experimental design, sample preparation, image processing, and data analysis. The core is equipped with state-of-the-art technologies and expertise in histology, high-resolution histological imaging, confocal microscopy, light sheet microscopy, spinning disk microscopy, and optical projection tomography.

Our team strives to provide you with the knowledge and equipment you need to perform your experiment successfully.

For optimal results, reach out to our staff in the planning stages of your experiments.

Biology is a beautiful thing, and we want to work with you to make it that way!


Blaise Ndjamen, PhD
Staff Research Scientist II


Services Provided

  • Histology (Sample embedding, processing, and sectioning (paraffin or frozen) and histology analysis (e.g. H&E immunohistochemistry, immunofluoressence, TUNEL, RNAscope, tissue clearing)
  • Advanced Microscopy: confocal, spinning disk, light sheet, super-resolution, whole-slide scanning, and widefield microscopy
  • Quantitative Data and Image Analysis (using Imaris, Volocity, ImageJ/FIJI, MATLAB)
  • Training, consulting, and collaborations

Core Members

Blaise Ndjamen
Staff Research Scientist II

Roma Patterson
Research Technologist I

Anna Torrent Moreno
Research Technologist III

Fengrong Yan
Senior Research Technologist


Can I Get a Quote for My Project?

We will provide a quote once a request has been entered and confirmed.

What Type of Tissue Can Be Submitted to the Core Lab for Processing?

We accept a large variety of tissue types including regular soft tissues as well as bones, cells, and organoids pre-embedded in histogel or in suspension. All tissues must be fixed prior to submission.

Should I Fix My Samples Prior to Submitting Them to the Core, and What Is the Best Way to Fix Them?

Yes, all tissue should be fixed prior to submission. Most tissues do well with fresh perfusion followed by 4% PFA fixation overnight in the fridge. Common exceptions are brain and bone samples, which require extended fixation. Email us for more information. 

How Do I Submit My Samples?

Formalin-fixed samples must be fixed for paraffin embedding (FFPE), and samples should be fixed and stored in 70% ethanol. To prepare cryo-samples, fixed tissues are submitted in 30% sucrose. The sample container must be leak-proof, and labeled with the iLab request track numbers.

Cassettes should be hand labeled with #2 pencil or solvent-resistant markers (we use the KP Marker Plus, from Scutek laboratories).

Let us know if you want your container returned, otherwise it will be recycled. You can provide your own slide boxes or purchase them from the core.

Any antibodies you provide must also be labeled.

Can Samples Be Sent by Mail?

All samples must be dropped off in person.

When Will My Project Be Done?

The turn-around time is typically 10-15 working days, depending upon the size of the order and how many requests we have in our queue.

How Do I Know When My Samples Are Ready?

You will be noticed by iLab mail. Pick up by the drop-off area, in room 367. Remember to pick up your antibodies as well!

Does the Core Provide Pathology Assessment?

Our core does not provide pathology assessment.

How Do I Pay for Services?

When you create an iLab account, you will provide a valid PO. We do not accept credit cards or cash.

Can I Use the Core Equipment (Scopes, Cryostat, Microtome) Independently?

All users must be trained by staff prior to accessing and using any equipment in the core.



Histology: Histology can be a complicated and confusing subject. All steps from dissection and fixation through processing, sectioning, and staining are important to get right. When tissue is removed from the body, there is a rapid activation of proteolytic enzymes involved with tissue decomposition. In order to view tissues in a state that is as “life-like” as possible, the tissue must be processed immediately. In most circumstances, this is done through immediate fixation using paraformaldehyde or formalin

Microscopy: The Microscopy team provides training and support services for independent users, as well as more advanced microscopy imaging services, 3D deconvolution and rendering, image analysis, and quantitation. Our staff provides consultation and assistance with all aspects of experimental design, sample preparation, imaging, data processing and analysis.


Quantitative Data and Image Analysis (using Imaris, Volocity, ImageJ/FIJI, MATLAB)

Training, Consultation & Collaboration


Fees and Scheduling

For more information on our fees, or to obtain a lab service agreement, contact us.


The Histology and Light Microscopy Core recharges researchers at an hourly rate for training and support with microscopes and sample preparation. Consult with our staff before preparing samples to ensure your reagents match the available equipment.

You are required to complete an initial training session before using any equipment in the core.

If you are part of UC San Francisco:

If you are part of a nonprofit institution or a private company:

  • Contact the core at
  • Complete the lab service agreement and email it to the core
  • Create an account on iLab
  • Request services on iLab

To start your session with an already existing reservation:

  • To access your existing reservation, visit the equipment kiosk. Use your iLab credentials to log in.
  • Once logged in, you will see a list of your pre-scheduled reservations under “My kiosk sessions.”
  • Once you find your session, click the green “start” button. You will see the details of your reservation as well as a timer.
  • You may log out while your session is in process. To log out, click the upper right-hand side menu and select Log out. On the log out screen, you will see your list of Active sessions.

To start your session as a walk-in:

  • Log in to the core kiosk using your iLab credentials.
  • Select the instrument you would like to use from the menu.
  • Once a calendar of availability appears, select “create session." Choose your desired duration, and click “create session” again.
  • A new window will appear with the details for that reservation. You may be required to enter in your payment information and the equipment use type.
  • Once you fill out all the required information, click the start button to begin your session. After you click start, you will see a timer in the upper right-hand corner.
  • To navigate back to your list of sessions, click in the drop-down menu where you see your name and select “my reservations.”
  • To log out, click the upper right-hand side menu and select “Log out.” You may log out while your session is in process. On the log out screen, you will see your list of active sessions.

To end your session:

  • Login to the core kiosk using your iLab credentials.
  • Find your current reservation in the list under “My kiosk sessions” and click the blue finish button.
  • Confirm your action and click “finish session.” Your time on the instrument has been logged.


Recent Publications

Microglial microRNAs mediate sex-specific responses to tau pathology. A. Hsu, Q. Duan, S. McMahon, Y. Huang, S. A. Wood, N. S. Gray, B. Wang, B. G. Bruneau and S. M. Haldar. (2020). Salt-inducible kinase 1 maintains HDAC7 stability to promote pathologic cardiac remodeling. J Clin Invest, doi:10.1172/JCI133753 • L. Kodama, E. Guzman, J. I. Etchegaray, Y. Li, F. A. Sayed, L. Zhou, Y. Zhou, L. Zhan, D. Le, J. C. Udeochu, C. D. Clelland, Z. Cheng, G. Yu, Q. Li, K. S. Kosik and L. Gan (2020). Nat Neurosci. 23(2), 167–171. doi:10.1038/s41593-019-0560-7

Tau Reduction Prevents Key Features of Autism in Mouse Models. C. Tai, C. W. Chang, G. Q. Yu, I. Lopez, X. Yu, X. Wang, W. Guo and L. Mucke (2020). Neuron. doi:10.1016/j.neuron.2020.01.038

Single-Cell Determination of Cardiac Microtissue Structure and Function Using Light Sheet Microscopy. D. Turaga, O. B. Matthys, T. A. Hookway, D. A. Joy, M. Calvert and T. C. McDevitt (2020). Tissue Eng Part C Methods. doi:10.1089/ten.TEC.2020.0020

Self-Organized Pluripotent Stem Cell Patterning by Automated Design. D. Briers, A.R.G. Libby, I. Haghighi, D.A. Joy, B.R. Conklin, C. Belta, T.C. McDevitt (2019). Cell. doi:10.2139/ssrn.3318933

A Mac2-positive progenitor-like microglial population survives independent of CSF1R signaling in adult mouse brain. L.Zhan, P.D. Sohn, Y. Zhou, Y. Li, L. Gan (2019). bioRxiv. doi:10.1101/722090.

Context-Specific Transcription Factor Functions Regulate Epigenomic and Transcriptional Dynamics during Cardiac Reprogramming. N.R. Stone, C.A. Gifford, R. Thomas, K.J.B. Pratt, K. Samse-Knapp, T.M.A. Mohamed, E.M. Radzinsky, A. Schricker, L. Ye, P. Yu, J.G. van Bemmel, K.N. Ivey, K.S.Pollard, D. Srivastava (2019). Cell Stem Cell. 25(1), 87–102.e9

Single-cell analysis of cardiogenesis reveals basis for organ-level developmental defects. T.Y. de Soysa, S.S. Ranade, S. Okawa, S. Ravichandran, Y. Huang, H.T. Salunga, A. Schricker, A. del Sol, C.A. Gifford, D. Srivastava (2019). Nature. 572, 120–124.

Premature MicroRNA-1 Expression Causes Hypoplasia of the Cardiac Ventricular Conduction System. E. Samal, M. Evangelista, G, Galang, D. Srivastava, Y. Zhao, V. Vedantham (2019). Frontiers in Physiology. doi: 10.3389/fphys.2019.00235

Gladstone-led Publications

Fibrinogen in neurological diseases: mechanisms, imaging and therapeutics. M. A. Petersen, J. K. Ryu and K. Akassoglou (2018). Nat Rev Neurosci. 19(5), 283–301. doi:10.1038/nrn.2018.13 

Microglial microRNAs mediate sex-specific responses to tau pathology. L. Kodama, E. Guzman, J. I. Etchegaray, Y. Li, F. A. Sayed, L. Zhou, Y. Zhou, L. Zhan, D. Le, J. C. Udeochu, C. D. Clelland, Z. Cheng, G. Yu, Q. Li, K. S. Kosik and L. Gan (2020). Nat Neurosci. 23(2), 167–171. doi:10.1038/s41593-019-0560-7

Do Microglial Sex Differences Contribute to Sex Differences in Neurodegenerative Diseases? L. Kodama and L. Gan (2019). Trends Mol Med. 25(9), 741–749. doi:10.1016/j.molmed.2019.05.001 

Differential effects of partial and complete loss of TREM2 on microglial injury response and tauopathy. F. A. Sayed, M. Telpoukhovskaia, L. Kodama, Y. Li, Y. Zhou, D. Le, A. Hauduc, C. Ludwig, F. Gao, C. Clelland, L. Zhan, Y. A. Cooper, D. Davalos, K. Akassoglou, G. Coppola and L. Gan (2018). Proc Natl Acad Sci U S A. 115(40), 10172–10177. doi:10.1073/pnas.1811411115 

Proximal recolonization by self-renewing microglia re-establishes microglial homeostasis in the adult mouse brain. L. Zhan, G. Krabbe, F. Du, I. Jones, M. C. Reichert, M. Telpoukhovskaia, L. Kodama, C. Wang, S. H. Cho, F. Sayed, Y. Li, D. Le, Y. Zhou, Y. Shen, B. West and L. Gan (2019). PLoS Biol. 17(2), e3000134. doi:10.1371/journal.pbio.3000134

Direct Reprogramming of Human Fibroblasts toward a Cardiomyocyte-like State. J.D. Fu, N.R. Stone, L. Liu, C.I Spencer, L. Qian, Y. Hayashi, P. Delgado-Olguin, S. Ding, B.G. Bruneau, D. Srivastava (2013). Stem Cell Reports. 1, 235–247 

Context-Specific Transcription Factor Functions Regulate Epigenomic and Transcriptional Dynamics during Cardiac Reprogramming. N. R. Stone, C. A. Gifford, R. Thomas, K. J. B. Pratt, K. Samse-Knapp, T. M. A. Mohamed, E. M. Radzinsky, A. Schricker, L. Ye, P. Yu, J. G. van Bemmel, K. N. Ivey, K. S. Pollard and D. Srivastava (2019). Cell Stem Cell. 25(1), 87–102 e109. doi:10.1016/j.stem.2019.06.012 

Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming. T. M. Mohamed, N. R. Stone, E. C. Berry, E. Radzinsky, Y. Huang, K. Pratt, Y. S. Ang, P. Yu, H. Wang, S. Tang, S. Magnitsky, S. Ding, K. N. Ivey and D. Srivastava (2017). Circulation. 135(10), 978–995. doi:10.1161/CIRCULATIONAHA.116.024692 

Fibrinogen induces neural stem cell differentiation into astrocytes in the subventricular zone via BMP signaling. L. Pous, S. S. Deshpande, S. Nath, S. Mezey, S. C. Malik, S. Schildge, C. Bohrer, K. Topp, D. Pfeifer, F. Fernandez-Klett, S. Doostkam, D. K. Galanakis, V. Taylor, K. Akassoglou and C. Schachtrup (2020). Nat Commun. 11(1), 630. doi:10.1038/s41467-020-14466-y 

Imaging the dynamic interactions between immune cells and the neurovascular interface in the spinal cord. N. Borjini, E. Paouri, R. Tognatta, K. Akassoglou and D. Davalos (2019). Exp Neurol. 322(113046). doi:10.1016/j.expneurol.2019.113046 

Chromatin and epigenetics in development: a Special Issue. B. G. Bruneau, H. Koseki, S. Strome and M. E. Torres-Padilla (2019). Development. 146(19), doi:10.1242/dev.185025

Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards. A. L. Lind, Y. Y. Y. Lai, Y. Mostovoy, A. K. Holloway, A. Iannucci, A. C. Y. Mak, M. Fondi, V. Orlandini, W. L. Eckalbar, M. Milan, M. Rovatsos, I. G. Kichigin, A. I. Makunin, M. Johnson Pokorna, M. Altmanova, V. A. Trifonov, E. Schijlen, L. Kratochvil, R. Fani, P. Velensky, I. Rehak, T. Patarnello, T. S. Jessop, J. W. Hicks, O. A. Ryder, J. R. Mendelson, 3rd, C. Ciofi, P. Y. Kwok, K. S. Pollard and B. G. Bruneau (2019). Nat Ecol Evol. 3(8), 1241–1252. doi:10.1038/s41559-019-0945-8

CTCF confers local nucleosome resiliency after DNA replication and during mitosis. N. Owens, T. Papadopoulou, N. Festuccia, A. Tachtsidi, I. Gonzalez, A. Dubois, S. Vandormael-Pournin, E. P. Nora, B. G. Bruneau, M. Cohen-Tannoudji and P. Navarro (2019). Elife. 8, doi:10.7554/eLife.47898

RNA Interactions Are Essential for CTCF-Mediated Genome Organization. R. Saldana-Meyer, J. Rodriguez-Hernaez, T. Escobar, M. Nishana, K. Jacome-Lopez, E. P. Nora, B. G. Bruneau, A. Tsirigos, M. Furlan-Magaril, J. Skok and D. Reinberg (2019). Mol Cell. 76(3), 412–422 e415. doi:10.1016/j.molcel.2019.08.015

A De Novo Shape Motif Discovery Algorithm Reveals Preferences of Transcription Factors for DNA Shape Beyond Sequence Motifs. M. A. H. Samee, B. G. Bruneau and K. S. Pollard (2019). Cell Syst. 8(1), 27–42 e26. doi:10.1016/j.cels.2018.12.001

Fibrinogen Activates BMP Signaling in Oligodendrocyte Progenitor Cells and Inhibits Remyelination after Vascular Damage. M. A. Petersen, J. K. Ryu, K. J. Chang, A. Etxeberria, S. Bardehle, A. S. Mendiola, W. Kamau-Devers, S. P. J. Fancy, A. Thor, E. A. Bushong, B. Baeza-Raja, C. A. Syme, M. D. Wu, P. E. Rios Coronado, A. Meyer-Franke, S. Yahn, L. Pous, J. K. Lee, C. Schachtrup, H. Lassmann, E. J. Huang, M. H. Han, M. Absinta, D. S. Reich, M. H. Ellisman, D. H. Rowitch, J. R. Chan and K. Akassoglou (2017). Neuron. 96(5), 1003–1012 e1007. doi:10.1016/j.neuron.2017.10.008

Heart enhancers with deeply conserved regulatory activity are established early in zebrafish development. X. Yuan, M. Song, P. Devine, B. G. Bruneau, I. C. Scott and M. D. Wilson (2018). Nat Commun. 9(1), 4977. doi:10.1038/s41467-018-07451-z

Cooperative activation of cardiac transcription through myocardin bridging of paired MEF2 sites. C. M. Anderson, J. Hu, R. Thomas, T. B. Gainous, B. Celona, T. Sinha, D. E. Dickel, A. B. Heidt, S. M. Xu, B. G. Bruneau, K. S. Pollard, L. A. Pennacchio and B. L. Blac. (2017). Development. 144(7), 1235–1241. doi:10.1242/dev.138487

An open-source control system for in vivo fluorescence measurements from deep-brain structures. S. F. Owen and A. C. Kreitzer (2019). J Neurosci Methods. 311(170–177). doi:10.1016/j.jneumeth.2018.10.022

Thermal constraints on in vivo optogenetic manipulations. S. F. Owen, M. H. Liu and A. C. Kreitzer (2019). Nat Neurosci. 22(7), 1061–1065. doi:10.1038/s41593-019-0422-3

Regulation of Tau Homeostasis and Toxicity by Acetylation. T. Tracy, K. C. Claiborn and L. Gan (2019). Adv Exp Med Biol. 1184(47-55). doi:10.1007/978-981-32-9358-8_4

An Alzheimer’s-disease-protective APOE mutation. K. A. Zalocusky, M. R. Nelson and Y. Huang. (2019). Nat Med, 25(11), 1648-1649. doi:10.1038/s41591-019-0634-9 23.

Editorial overview: Neurobiology of disease (2018). C. Bagni and A. C. Kreitzer (2018). Curr Opin Neurobiol. 48(iv-vi). doi:10.1016/j.conb.2018.01.005

Converging pathways in neurodegeneration, from genetics to mechanisms. L. Gan, M. R. Cookson, L. Petrucelli and A. R. La Spada (2018). Nat Neurosci. 21(10), 1300–1309. doi:10.1038/s41593-018-0237-7

A Subpopulation of Striatal Neurons Mediates Levodopa-Induced Dyskinesia. A. E. Girasole, M. Y. Lum, D. Nathaniel, C. J. Bair-Marshall, C. J. Guenthner, L. Luo, A. C. Kreitzer and A. B. Nelson (2018). Neuron. 97(4), 787–795 e786. doi:10.1016/j.neuron.2018.01.017

Motor thalamus supports striatum-driven reinforcement. Lalive AL, Lien AD, Roseberry TK, Donahue CH, Kreitzer AC. Elife. 2018;7:e34032. Published 2018 Oct 8. doi:10.7554/eLife.34032

Spatiotemporal distribution of fibrinogen in marmoset and human inflammatory demyelination. N. J. Lee, S. K. Ha, P. Sati, M. Absinta, N. J. Luciano, J. A. Lefeuvre, M. K. Schindler, E. C. Leibovitch, J. K. Ryu, M. A. Petersen, A. C. Silva, S. Jacobson, K. Akassoglou and D. S. Reich (2018). Brain. 141(6), 1637–1649. doi:10.1093/brain/awy082

Robust identification of deletions in exome and genome sequence data based on clustering of Mendelian errors. K. B. Manheimer, N. Patel, F. Richter, J. Gorham, A. C. Tai, J. Homsy, M. T. Boskovski, M. Parfenov, E. Goldmuntz, W. K. Chung, M. Brueckner, M. Tristani-Firouzi, D. Srivastava, J. G. Seidman, C. E. Seidman, B. D. Gelb and A. J. Sharp (2018). Hum Mutat. 39(6), 870–881. doi:10.1002/humu.23419

Fast-Spiking Interneurons Supply Feedforward Control of Bursting, Calcium, and Plasticity for Efficient Learning. S. F. Owen, J. D. Berke and A. C. Kreitzer (2018). Cell. 172(4), 683–695 e615. doi:10.1016/j.cell.2018.01.005

Pericytes: The Brain's Very First Responders? V. A. Rafalski, M. Merlini and K. Akassoglou (2018). Neuron. 100(1), 11–13. doi:10.1016/j.neuron.2018.09.033

Fibrin-targeting immunotherapy protects against neuroinflammation and neurodegeneration. J. K. Ryu, V. A. Rafalski, A. Meyer-Franke, R. A. Adams, S. B. Poda, P. E. Rios Coronado, L. O. Pedersen, V. Menon, K. M. Baeten, S. L. Sikorski, C. Bedard, K. Hanspers, S. Bardehle, A. S. Mendiola, D. Davalos, M. R. Machado, J. P. Chan, I. Plastira, M. A. Petersen, S. J. Pfaff, K. K. Ang, K. K. Hallenbeck, C. Syme, H. Hakozaki, M. H. Ellisman, R. A. Swanson, S. S. Zamvil, M. R. Arkin, S. H. Zorn, A. R. Pico, L. Mucke, S. B. Freedman, J. B. Stavenhagen, R. B. Nelson and K. Akassoglou (2018). Nat Immunol. 19(11), 1212–1223. doi:10.1038/s41590-018-0232-x

Military-related risk factors for dementia. H. M. Snyder, R. O. Carare, S. T. DeKosky, M. J. de Leon, D. Dykxhoorn, L. Gan, R. Gardner, S. R. Hinds, 2nd, M. Jaffee, B. T. Lamb, S. Landau, G. Manley, A. McKee, D. Perl, J. A. Schneider, M. Weiner, C. Wellington, K. Yaffe, L. Bain, A. M. Pacifico and M. C. Carrillo (2018). Alzheimers Dement. 14(12), 1651–1662. doi:10.1016/j.jalz.2018.08.011

A Genetically Encoded Fluorescent Sensor Enables Rapid and Specific Detection of Dopamine in Flies, Fish, and Mice. F. Sun, J. Zeng, M. Jing, J. Zhou, J. Feng, S. F. Owen, Y. Luo, F. Li, H. Wang, T. Yamaguchi, Z. Yong, Y. Gao, W. Peng, L. Wang, S. Zhang, J. Du, D. Lin, M. Xu, A. C. Kreitzer, G. Cui and Y. Li (2018). Cell. 174(2), 481–496 e419. doi:10.1016/j.cell.2018.06.042

Tau-mediated synaptic and neuronal dysfunction in neurodegenerative disease. T. E. Tracy and L. Gan (2018). Curr Opin Neurobiol. 51(134–138). doi:10.1016/j.conb.2018.04.027

The Psychiatric Cell Map Initiative: A Convergent Systems Biological Approach to Illuminating Key Molecular Pathways in Neuropsychiatric Disorders. A. J. Willsey, M. T. Morris, S. Wang, H. R. Willsey, N. Sun, N. Teerikorpi, T. B. Baum, G. Cagney, K. J. Bender, T. A. Desai, D. Srivastava, G. W. Davis, J. Doudna, E. Chang, V. Sohal, D. H. Lowenstein, H. Li, D. Agard, M. J. Keiser, B. Shoichet, M. von Zastrow, L. Mucke, S. Finkbeiner, L. Gan, N. Sestan, M. E. Ward, R. Huttenhain, T. J. Nowakowski, H. J. Bellen, L. M. Frank, M. K. Khokha, R. P. Lifton, M. Kampmann, T. Ideker, M. W. State and N. J. Krogan (2018). Cell. 174(3), 505–520. doi:10.1016/j.cell.2018.06.016

Klotho controls the brain-immune system interface in the choroid plexus. L. Zhu, L. R. Stein, D. Kim, K. Ho, G. Q. Yu, L. Zhan, T. E. Larsson and L. Mucke (2018). Proc Natl Acad Sci U S A. 115(48), E11388-E11396. doi:10.1073/pnas.1808609115

In Vivo Imaging of CNS Injury and Disease. K. Akassoglou, M. Merlini, V. A. Rafalski, R. Real, L. Liang, Y. Jin, S. E. Dougherty, V. De Paola, D. J. Linden, T. Misgeld and B. Zheng (2017). J Neurosci. 37(45), 10808–10816. doi:10.1523/JNEUROSCI.1826-17.2017

Core-led Publications

Single-Cell Determination of Cardiac Microtissue Structure and Function Using Light Sheet Microscopy. D. Turaga, O. B. Matthys, T. A. Hookway, D. A. Joy, M. Calvert and T. C. McDevitt (2020). Tissue Eng Part C Methods. doi:10.1089/ten.TEC.2020.0020

Lightsheet fluorescence microscopy of branching human fetal kidney. D. Isaacson, J. Shen, D. McCreedy, M. Calvert, T. McDevitt, G. Cunha and L. Baskin (2018). Kidney Int. 93(2), 525. doi:10.1016/j.kint.2017.09.010

Single-Cell Determination of Cardiac Microtissue Structure and Function Using Light Sheet Microscopy. D. Turaga, O. B. Matthys, T. A. Hookway, D. A. Joy, M. Calvert and T. C. McDevitt (2020). Tissue Eng Part C Methods. doi:10.1089/ten.TEC.2020.0020

Imaging the developing human external and internal urogenital organs with light sheet fluorescence microscopy. D. Isaacson, D. McCreedy, M. Calvert, J. Shen, A. Sinclair, M. Cao, Y. Li, T. McDevitt, G. Cunha and L. Baskin (2020). Differentiation. 111(12–21). doi:10.1016/j.diff.2019.09.006

Three-dimensional imaging of the developing human fetal urogenital-genital tract: Indifferent stage to male and female differentiation. D. Isaacson, J. Shen, M. Overland, Y. Li, A. Sinclair, M. Cao, D. McCreedy, M. Calvert, T. McDevitt, G. R. Cunha and L. Baskin (2018). Differentiation. 103(14–23). doi:10.1016/j.diff.2018.09.003

More Publications