
Leading Edge

Review
Genetics of Human Cardiovascular Disease

Sekar Kathiresan1,2,3,* and Deepak Srivastava4,5,*
1Center for Human Genetic Research and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
2Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
3Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
4Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158, USA
5Departments of Pediatrics and Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA

*Correspondence: skathiresan@partners.org (S.K.), dsrivastava@gladstone.ucsf.edu (D.S.)

DOI 10.1016/j.cell.2012.03.001

Cardiovascular disease encompasses a range of conditions extending from myocardial infarction
to congenital heart disease, most of which are heritable. Enormous effort has been invested
in understanding the genes and specific DNA sequence variants that are responsible for this
heritability. Here, we review the lessons learned for monogenic and common, complex forms of
cardiovascular disease. We also discuss key challenges that remain for gene discovery and for
moving from genomic localization to mechanistic insights, with an emphasis on the impact of
next-generation sequencing and the use of pluripotent human cells to understand the mechanism
by which genetic variation contributes to disease.
Introduction
Cardiovascular disease (CVD) is a leading health problem,

affecting more than 80,000,000 individuals in the United States

alone. CVD encompasses a broad range of disorders, including

diseases of the vasculature, diseases of the myocardium,

diseases of the heart’s electrical circuit, and congenital

heart disease (Roger et al., 2012). For nearly all of these disor-

ders, inherited DNA sequence variants play a role in conferring

risk for disease. For example, in the general population, a history

of premature atherosclerotic CVD in a parent confers �3.0-fold

increase in CVD risk to offspring (Lloyd-Jones et al., 2004). The

precise magnitude of the role of inheritance, however, varies

by disease and by other factors such as age of disease onset

and subtype of disease.

Over the past century, a key goal of biomedical research

has been to correlate genotype with phenotype, i.e., to identify

the specific genes and DNA sequence variants responsible

for trait variation in humans. What is the principal reason to

pursue this goal? Naturally occurring genetic variation has the

unique potential to reveal causal biologic mechanisms in

humans. This is particularly important, as some diseases like

myocardial infarction (MI) are poorly modeled in nonhuman

species.

In this Review, we consider the approaches used to discover

genes for human CVD and the lessons learned from the study

of Mendelian and of common, complex forms of CVD, and

we take a look forward at research driven by next generation

techniques, including sequencing and modeling human genetic

disease in cells.

Approaches to Discover Genes for CVD
To discover genes for CVD and its risk factors in humans, two

major approaches—linkage analysis and genetic association—

have been utilized. The choice of approach has depended on

the pattern of segregation, whether consistent with the ratios
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described by Mendel or more complex. Some forms of CVD

exhibit a simple pattern of inheritance suggestive of a single

causal gene that confers a large effect on phenotype. For

many of these Mendelian forms of CVD, direct DNA sequencing

and/or linkage analysis have successfully yielded the causal

gene and mutation. In 1985, Lehrman and colleagues directly

sequenced the low-density lipoprotein receptor (LDLR) gene in

a patient with homozygous familial hypercholesterolemia and

uncovered a 5 kilobase deletion that eliminated several exons,

representing the first demonstration of a mutation for Mendelian

CVD (Lehrman et al., 1985). In 1989, linkage analysis was

used to localize the chromosomal position of a causal gene for

hypertrophic cardiomyopathy, and in the subsequent year,

mutations in the beta cardiac myosin heavy chain were discov-

ered as causal for the phenotype (Geisterfer-Lowrance et al.,

1990; Jarcho et al., 1989). Other prominent examples in the

CVD field include long QT syndrome, severe hypercholesterol-

emia, a Mendelian family with early coronary artery disease,

Mendelian forms of hypertension, Marfan’s syndrome, and

several forms of congenital heart disease, including septal

defects and valve defects (Abifadel et al., 2003; Basson et al.,

1997; Berge et al., 2000; Curran et al., 1995; Dietz et al., 1991;

Garcia et al., 2001; Garg et al., 2003, 2005; Lifton et al., 2001;

Mani et al., 2007; Schott et al., 1998; Soria et al., 1989; Tartaglia

et al., 2001).

However, most CVD traits, such as MI or concentrations of

plasma LDL cholesterol, show complex inheritance, suggestive

of an interplay between multiple genes and nongenetic factors.

Mapping gene loci associated with complex traits requires

substantial levels of information and analysis, but since

2007, approaches to accomplish this goal have matured, and

genetic mapping for complex traits in humans has become

a reality. The intellectual foundations that enabled a systematic

genome-wide screen of common variants (termed genome-

wide association study [GWAS]) and results from this approach
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were recently reviewed (Altshuler et al., 2008; O’Donnell and

Nabel, 2011). The tools and methods included catalogs of

polymorphisms, techniques to genotype these DNA sequence

variants, and the analytical framework to distinguish true

association signal from false positives. The initial focus has

been on utilizing common DNA sequence variants (variants

with allele frequency > 1:20) as a discovery tool, largely

because it was practical to do so; recent advances in DNA

sequencing and genotyping technology will allow interrogation

of less frequent variants and will be considered below. The

National Human Genome Research Institute hosts a catalog

of published GWAS results, and as of January 14, 2012, the

catalog includes 1,143 publications and 5,585 single-nucleotide

polymorphisms (SNPs) with association evidence at p < 10�5

(Hindorff et al., 2009).

What have we learned from these gene discovery efforts?

Below, we discuss lessons that have emerged from geno-

type-to-phenotype correlation studies for Mendelian diseases,

followed by lessons from studies of common, complex

diseases.

Lessons Learned from the Study of Mendelian
Forms of CVD
Rare Variants Lead to Broadly Relevant Insights

Because Mendelian diseases are rare in the population, there

was initial skepticism about whether the genes and mechanisms

that cause these diseases would inform our understanding

of common forms of CVD. Linkage studies involve identifying

and recruiting families with unique, often severe phenotypes,

isolating a chromosomal segment that tracks with disease

status in the family, and then pinpointing the causal gene and

mutation in the linked segment. For a range of conditions, the

genes identified by these linkage studies have transformed

our understanding of CVD. Selected examples of Mendelian

diseases, the responsible genes, and the gleaned biological

and clinical insights are detailed in Table 1. Of particular

significance is monogenic severe hypercholesterolemia, for

which the six responsible genes have led to fundamental new

biological concepts and have supported the development of

new therapies.

Genotype-Phenotype Correlation Can Be Complex

Even in Monogenic Disorders

Although there are cases in which single gene mutations lead to

straightforward genotype-phenotype associations, other more

complex relationships exist as well. This complexity can arise

from three distinct genetic phenomena: pleiotropy, penetrance,

and expressivity. Sometimes, mutations in a single gene can

influence multiple phenotypic traits (i.e., pleiotropy). In 1995,

Wang, Keating, and colleagues identified the a subunit of the

type V voltage-gated sodium channel (SCN5A) as the cause of

inherited long QT syndrome type 3 (Wang et al., 1995). Since

then, mutations in the same gene have been demonstrated to

cause Brugada syndrome (right precordial ST-segment eleva-

tion and increased risk for ventricular arrhythmias), cardiac

conduction system disease, and dilated cardiomyopathy (Chen

et al., 1998; McNair et al., 2004; Schott et al., 1999). This range

of disease phenotypes may reflect the underlying functionality

of the channel.
Among carriers of a Mendelian mutation in a given family,

some may exhibit the condition and others may not. Penetrance

refers to the proportion of individuals with a given genotype

who exhibit the phenotype associated with the genotype. In

many Mendelian cardiovascular conditions inherited in an

autosomal-dominant manner, there is evidence for incomplete

penetrance. For example, Hobbs and colleagues reported that,

in a pedigree with familial hypercholesterolemia due to a point

mutation in LDLR, only 12 out of 18 heterozygotes had high

LDL cholesterol (>95th percentile), whereas some of the remain-

ing 6 had LDL cholesterol as low as 28th percentile for the

population (Hobbs et al., 1989). The lack of a high-cholesterol

phenotype given the same genotype may be due to modifier

genes or environmental influences.

Individuals with the same Mendelian genotype can also show

different degrees of the same phenotype. Expressivity is the

degree to which trait expression differs among individuals.

Marfan’s syndrome is a multisystem Mendelian disorder that

can include a range of signs and symptoms involving the skeletal

system (pectus excavatum, increased arm span to height ratio,

craniofacial alterations), ocular system (eye lens dislocation, flat

cornea), and cardiovascular system (aortic aneurysm, dissection

of the ascending aorta, mitral valve prolapse), among others

(Cañadas et al., 2010). Dietz and colleagues identified mutations

in the FBN1 gene encoding the extracellularmatrix protein fibrillin

1 as responsible forMarfan’s syndrome (Dietz et al., 1991).When

a specific mutation in the fibrillin 1 (FBN1) gene causes Marfan’s

syndrome in a family, carriers of the same mutation can display

variable clinical manifestations (Faivre et al., 2007).

Pleiotropy, penetrance, expressivity, and nongenetic factors

conspire to ensure that, even in a single gene disorder, genotype

does not ‘‘equal’’ a specific phenotype. This complexity has

several consequences. First, gene discovery is more difficult,

as genotype may not segregate perfectly with phenotype,

thereby reducing the power of linkage. Second, there is intense

interest in identifying modifiers—genetic or environmental—that

may modulate the relationship between genotype and pheno-

type. Finally, because of this complexity, in many Mendelian

diseases, it has been difficult to develop genotype-specific

prognostic or treatment recommendations.

The Long Road from Genotype to Mechanism

to Treatment

For Marfan’s syndrome, the path from the discovery of FBN1

as the causal gene to a breakthrough in the molecular under-

standing of the disease has spanned more than two decades.

Historically, Marfan’s syndrome had been viewed as a structural

disease due to a defect in elastic fibers (Lindsay andDietz, 2011).

The identification of mutations in an extracellular matrix protein

seemed to confirm this view. However, more recent studies

suggest that microfibrils normally bind the large latent complex

of the cytokine transforming growth factor b (TGF-b) and that

failure of this event to occur results in increased TGF-b activation

and signaling. Now, investigators are exploring the hypothesis

that blocking TGF-b signaling will ameliorate the growth of

aortic aneurysms in Marfan’s syndrome. For further examples

of therapeutic approaches derived from the study of Mendelian

disorders, we refer the reader to a recent review on this topic

(Dietz, 2010).
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Table 1. Selected Examples of Mendelian Diseases and Insights Derived from the Study of Causal Genes

Mendelian Condition Causal Genes Key Biological and Clinical Insights References

Severe

hypercholesterolemia

LDLR, APOB, ABCG5,

ABCG8, ARH, PCSK9

(1) Receptor-mediated endocytosis;

(2) receptor recycling; (3) feedback

regulation of receptors; (4) molecular

mechanism of intestinal cholesterol

absorption and biliary cholesterol

excretion; (5) high LDL cholesterol is

sufficient to cause MI.

(Abifadel et al., 2003;

Brown and Goldstein, 1986;

Garcia et al., 2001;

Lehrman et al., 1985)

Familial

hypobetalipoproteinemia

APOB, PCSK9, ANGPTL3 (1) Lifelong low-LDL cholesterol

(from loss-of-PCSK9 function) is

sufficient to protect from MI despite

other coronary risk factors.

(Cohen et al., 2006;

Musunuru et al., 2010a;

Soria et al., 1989)

Mendelian forms of low

and high blood pressure

SLC12A3, SLC12A1, KCNJ1,

CLCNKB, NR3C2, SCNN1A,

SCNN1B, SCNN1G;

CYP11B2, CYP11B1,

HSD11B2, NR3C2,

SCNN1B, SCNN1G, WNK1,

WNK4, KLHL3, CUL3

(1) Genes converge on a final common

pathway of altering net renal sodium

handling and balance; (2) identification

of new targets for the treatment

of blood pressure.

(Boyden et al., 2012;

Chang et al., 1996; Geller et al.,

2000; Geller et al., 1998;

Hansson et al., 1995; Lifton

et al., 1992a, 1992b, 2001; Mune

et al., 1995; Shimkets et al., 1994;

Simon et al., 1996a, 1996b, 1996c,

1997; Wilson et al., 2001)

Hypertrophic

cardiomyopathy

MYH7, TNNT2, TPM1,

TNNI3, MYL2, MYBPC3,

ACTC, MYL3

(1) Mutations have expanded knowledge

of the molecular mechanisms of heart

muscle contraction; (2) mutations may

cause increased TGF-b signaling in the

myocyte with subsequent effects on

neighboring fibroblasts, leading to

fibrosis and scarring.

(Bonne et al., 1995; Carrier et al.,

1993; Geisterfer-Lowrance et al.,

1990; Kimura et al., 1997;

Olson et al., 2000; Poetter et al.,

1996; Seidman and Seidman, 2001;

Thierfelder et al., 1994;

Watkins et al., 1995)

Marfan’s syndrome FBN1 (1) Aneurysm formation is likely due to

perturbations in cytokine signaling

cascades and the smooth muscle

contractile apparatus rather than defects

in the extracellular matrix; (2) unexpected

role for TGF-b pathway in disease.

(Dietz et al., 1991;

Lindsay and Dietz, 2011)

Atrial or ventricular

septal defects

NKX2-5, GATA-4, TBX5 (1) These transcription factors, originally

discovered in flies and mice, are critical

for proper heart development in humans

and function in a common complex.

(Basson et al., 1997; Garg et al.,

2003; Schott et al., 1998)

Bicuspid aortic

valve, Calcific

aortic valve disease

NOTCH1 (1) NOTCH1 functions to repress a default

osteoblast fate of the valve mesenchymal

cells; (2) NOTCH1 mutations likely result

in a derepression of this fate choice and

subsequent differentiation of valve cells

into an osteoblast-like phenotype.

(Garg et al., 2005)
Lessons Learned from the Study of Common, Complex
Forms of CVD
Gene Variants across the Spectrum of Allele Frequency

Contribute to Most Complex, Common Diseases and

Quantitative Traits

Variants associated with common, complex traits range in

frequency from common (>1:20 frequency) to low-frequency

(1:1,000 to 1:20) to very rare (<1:1,000). In other words, genetic

heterogeneity from variants across the frequency spectrum

may be the rule. Consider the example of plasma triglycerides,

a phenotype that marks triglyceride-rich lipoproteins, including

very low-density lipoprotein particles, chylomicrons, and

remnant products of their metabolism. Roughly 50% of the inter-

individual variability in plasma triglycerides is estimated to be
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on the basis of DNA sequence variants. Johansen, Hegele, and

colleagues studied individuals from the extremes of the plasma

triglyceride distribution (438 individuals with high triglycerides

[mean triglycerides = 14.2 mmol/l] and 327 individuals with low

triglycerides [mean triglycerides = 1.2 mmol/l]) (Johansen et al.,

2010) using both GWAS and resequencing of selected genes.

In the GWAS, common variants at seven loci were associated

with plasma triglycerides, and in the resequencing study, there

was an excess of rare, nonsynonymous variants across four

genes in individuals with high triglycerides when compared

with those with low triglycerides. A comprehensive logistic

regression model including clinical variables and both common

and rare genetic variants explained 42% of total variation in

hypertriglyceridemia diagnosis: clinical variables explained



Figure 1. Overlap of Genetic Loci Causing

Mendelian Dyslipidemic Syndromes, Those

Targeted by Lipid-Lowering Therapies, and

Those Identified in GWAS
Each GWAS locus is named according to a plau-
sible biologic candidate in the locus or in the gene
nearest to the lead single-nucleotide poly-
morphism (SNP). Note that, for most GWAS loci,
the causal gene is not yet proven. Of 19 genes
previously implicated in Mendelian lipid disorders,
16 of the genes underlying these Mendelian
disorders lie within 100 kilobases of one of the lead
SNPs mapped by GWAS, including nine that lie
within 10 kilobases of the nearest lead SNP (Te-
slovich et al., 2010).
20%, common genetic variants in seven loci explained 21%,

and rare genetic variants in four loci explained 1%. The genetic

architecture for triglycerides in the population appears to be

that of a mosaic comprised of large-effect variants rare in

frequency, small-effect variants common in frequency, and

environmental influences.

More generally, the concept of a mosaic model is supported

by the fact that, for many cardiovascular traits and diseases,

there is strong overlap between the genes mapped using

GWAS and those identified earlier through Mendelian families.

Nineteen genes have been identified as monogenic causes of

extremely low or high levels of LDL cholesterol, high-density lipo-

protein (HDL) cholesterol, and triglycerides; loci harboring 16 of

these geneswere alsomapped usingGWAS (Figure 1) (Teslovich

et al., 2010). Rare mutations in FBN1 cause the thoracic aortic

aneurysms and dissections seen inMarfan’s syndrome, whereas

common SNPs in the introns of FBN1 are the top association

result in a GWAS for spontaneous, nonsyndromic thoracic aortic

aneurysm and dissection (Lemaire et al., 2011). Rare mutations

in SCN5A, KCNQ1, KCNH2, KCNE1, and KCNJ2 cause mono-

genic long QT syndrome, whereas common SNPs in these five

genes are associated with QT interval measured on electrocar-

diograms in the population (Newton-Cheh et al., 2009).

New Biological Insights from GWAS Genes

Plasma lipids, platelets, and sickle cell disease represent three

fields in which there has been progress toward new biology

based on GWAS. GWAS for plasma LDL cholesterol, HDL

cholesterol, and triglycerides have evaluated > 100,000 partic-

ipants and have mapped 95 distinct loci associated with at

least one of these traits at a stringent statistical threshold

(p < 5 3 10�8) (Kathiresan et al., 2008, 2009b; Pollin et al.,

2008; Teslovich et al., 2010; Willer et al., 2008). Approximately

one-third of the loci harbored genes previously appreciated

to play a role in lipoprotein metabolism, including five targets

of lipid-modifying therapies: HMGCR (statins), NPC1L1 (ezeti-

mibe), APOB (mipomersen), CETP (anacetrapib, dalcetrapib,

and evacetrapib), and PCSK9 (therapies in development by

several pharmaceutical companies) (Figure 1).

Of note, the proportion of overall phenotypic variance ex-

plained by a genetic variant may have little correlation with the
ultimate therapeutic or biological value of the gene mapped

by the variant. Phenotypic variance explained by a variant is

a function of two key parameters: allele frequency and effect

size. For Mendelian diseases, the causal variants typically

confer large effects but explain a small proportion of trait vari-

ance due to their rare frequencies. Variants from GWAS are

common but explain a small proportion of trait variance due to

modest effects. Nevertheless, variants that explain a small

proportion of phenotypic variance may provide substantial bio-

logical or therapeutic insights. This has been highlighted for

Mendelian genes in Table 1. Two examples for common SNPs

include variants in the introns of HMGCR and NPC1L1 (Teslo-

vich et al., 2010). These SNPs confer a small effect on plasma

LDL cholesterol at 3 mg/dl and 2 mg/dl, respectively; however,

targeting of these genes with statins or ezetimibe, respectively,

has a much more dramatic effect on LDL cholesterol. And to

date, there have been no rare, large-effect Mendelian mutations

described in HMGCR, presumably because such mutations

are highly deleterious and not tolerated. Thus, some disease

genes may only be discoverable through common, small-effect

variants.

Approximately two-thirds of the 95 loci discovered for plasma

lipid traits harbored genes not previously appreciated to play

a role in the biology of lipoproteins. Several genes at the ‘‘novel’’

loci have now been manipulated in the mouse, and this manipu-

lation led to plasma lipid changes analogous to that suggested

by the human genetics. An example is the 8q24 locus containing

the tribbles homolog 1 (TRIB1) gene (Burkhardt et al., 2010). DNA

sequence variants downstream of the TRIB1 gene were initially

associated with plasma lipids, with the minor allele having

association with lower plasma triglycerides, lower plasma LDL

cholesterol, and higher plasma HDL cholesterol. Given this

pattern of plasma lipid changes, minor allele carriers would be

expected to have lower risk for coronary heart disease, and

several groups have confirmed this expectation (Varbo et al.,

2011). Targeted deletion of Trib1 in mice led to elevated levels

of plasma triglycerides and cholesterol, whereas liver-specific

overexpression of Trib1 reduced levels of plasma triglycerides

and cholesterol. SORT1, GALNT2, PPP1R3B, and TTC39B are

four other genes implicated in lipoprotein regulation by GWAS
Cell 148, March 16, 2012 ª2012 Elsevier Inc. 1245



and are confirmed in a similar manner using mouse models

(Musunuru et al., 2010b; Teslovich et al., 2010).

Analogous to plasma lipids, well-powered GWAS and experi-

mental follow-up in cells and model organisms have identified

new regulators of thrombopoiesis and/or erythropoiesis. A

GWAS study for blood platelet count and volume mapped 58

loci (Gieger et al., 2011). For genes at 11 mapped loci, gene

silencing in either the zebrafish or Drosophila led to alterations

in thrombopoiesis and/or erythropoiesis. The precise mecha-

nisms by which these genes alter blood cell formation remain

to be defined through additional studies; however, we now

have a plethora of new genes for experimental follow-up, all

with a foundation of relevance to human phenotypes.

The identification of BCL11A as a transcriptional regulator of

fetal hemoglobin synthesis and as a potential therapeutic target

for sickle cell disease represents more biology learned from

GWAS. Sickle cell disease results from the substitution of a valine

for glutamic acid in the b-globin chain of adult hemoglobin. The

mutated hemoglobin (HbS) undergoes conformational change

and polymerization upon deoxygenation, leading to hemolysis,

red blood cell deformation, and pathology due to microvascular

occlusion. Hereditary persistence of fetal hemoglobin (HbF)

decreases the severity of sickle cell disease, and the level of

HbF in adults is inherited as a quantitative trait. As a result, induc-

tion of HbF in adults has been a long-standing goal of therapies

for sickle cell disease. In 2007, GWAS for the HbF phenotype

revealed a single strong locus, with sequence variants in the

intron of a transcription factor, B cell CLL/lymphoma 11A

(BCL11A) (Menzel et al., 2007). A series of elegant studies led

by Orkin and colleagues has now established that BCL11A

represses the transcription of HbF expression in erythroid cells

(Sankaran et al., 2008, 2009; Xu et al., 2010) and demonstrated

that inactivation of BCL11A in a mouse model of sickle cell

disease leads to pancellular induction of HbF and corrected

the hematologic and pathologic defects of the disease (Xu

et al., 2011).

Despite these successes, for the vast majority of mapped loci,

it has been a challenge to move from genomic localization to

biologic mechanism. Why? First, as discussed earlier in the

context of discovery of Mendelian disease genes, inferring

new biology from human genetics takes time, and only about

5 years have elapsed since the initial GWAS publications.

Second, gene mapping and experimental follow-up require

unique skill sets and expertise. In the examples highlighted

above, collaborations between experimentalists and re-

searchers focused on human genetics have been crucial to

making progress, yet skepticism regarding the validity and value

of discoveries made from GWAS may have dampened the

enthusiasm for such collaborations (McClellan and King, 2010).

Third, genetic mapping by association gives us gene regions

and not necessarily specific causal variants or causal genes.

For each SNP and locus mapped by GWAS, we can generally

conclude that, within �100,000 bases of the locus, there

exists a causal gene. Ideally, at each discovered locus, we

need to understand: (1) the causal variant, (2) the causal gene,

(3) the mechanism by which the variant affects the gene, and

(4) the mechanism by which the gene affects the phenotype.

At the 1p13 locus for LDL cholesterol and MI, fine-mapping,
1246 Cell 148, March 16, 2012 ª2012 Elsevier Inc.
resequencing, and manipulation of positional candidate genes

in cell culture and model organisms have addressed these key

questions (Musunuru et al., 2010b). However, at most loci, the

answers remain a mystery.

Several features of genetic mapping using common variants

have contributed to the difficulties. Local correlation (linkage

disequilibrium) and weak effect size of common variants have

made it difficult to identify causal variants. Mapped SNP variants

have weak or modest effect (odds ratios of 1.05 to 1.40 for

a dichotomous trait and < 1% of variance explained for contin-

uous traits), and these weak effects mean that, in order to statis-

tically distinguish between two correlated variants, the sample

sizes need to be inordinately large. Nearly all of the mapped

SNP variants are noncoding, and our ability to interpret the non-

coding portion of the genome remains limited. Mechanisms by

which a noncoding variant may affect a nearby gene include,

among others, affecting a transcription factor or microRNA-

binding site and regulating the local chromatin state.

In only a few instances has there been direct demonstration

that a specific noncoding GWAS SNP affects the relevant gene

through one of these mechanisms (Musunuru et al., 2010b).

The example of chromosome 9p21 and risk for MI exemplifies

the challenge. In 2007, several independent GWASs identified

SNPs on chromosome 9p21 as associated with MI or coronary

artery disease, with�50% of the population carrying a risk allele

and each copy of the risk allele conferring �29% increase in

risk for MI/coronary artery disease (Helgadottir et al., 2007;

McPherson et al., 2007; Samani et al., 2007). The most strongly

associated SNPs were noncoding and > 100 kilobases down-

stream of the nearest protein-coding genes CDKN2B (cyclin-

dependent kinase inhibitor 2B encoding the protein p15INK4b)

and CDKN2A (cyclin-dependent kinase inhibitor 2A encoding

the proteins p16INK4a and p14ARF). Resequencing and fine-

mapping studies in the gene region have identified a set of

SNPs with indistinguishable statistical evidence, but not one

causal variant (Shea et al., 2011). By what mechanism does

the risk allele alter the relevant gene at the locus, and what is

the gene that is responsible for atherosclerosis susceptibility?

Answers to these two questions have been particularly elusive.

Several mechanisms by which the noncoding variant might

impact phenotype have been explored, including alteration of

a noncoding RNA in the region (e.g., antisense noncoding RNA

in the INK4 locus [ANRIL]) and disruption of the binding of a

transcription factor, as observed with STAT1 (Harismendy

et al., 2011; Holdt and Teupser, 2012). No definitive answers

have emerged. Finally, a noncoding gene region homologous

to the human-associated interval on 9p21 was deleted in mice,

and this targeted deletion led to near absence of CDKN2A and

CDKN2B expression in several tissues, increased rate of tumors,

and increased proliferation of aortic smooth muscle cells (Visel

et al., 2010). However, these mice did not develop increased

atherosclerosis on a diet rich in fat and cholesterol. For the

9p21 locus, the path from genomic localization to functional

insights has not been straightforward, likely due to our limited

ability at present to interpret the noncoding portions of the

human genome. However, as recently reviewed (Raychaudhuri,

2011), integration of GWAS findings with expression quantitative

trait loci (eQTL) (eQTLs are genetic variants that correlate with



the transcript level of a gene) and genome-wide maps of

chromatin state dynamics may improve our ability to interpret

GWAS findings and understand how noncoding variation regu-

lates genes (Ernst et al., 2011; Schadt et al., 2008).

Gene Variants May Distinguish Causal

from Noncausal Biomarkers

Hypotheses concerning etiologic agents for complex diseases

have often initially come from observational epidemiology. In

1961, in a paper entitled ‘‘Factors of Risk in the Development

of Coronary Heart Disease,’’ Dr. William Kannel and colleagues

at the Framingham Heart Study established an association of

plasma total cholesterol with future risk for coronary heart

disease (Kannel et al., 1961). Since then, hundreds of soluble

biomarkers have similarly been associated with risk for coronary

artery disease. How many of these biomarkers directly cause

coronary artery disease, and how many simply reflect other

causal processes? And why is this question important? Both

causal and noncausal biomarkers may be helpful in terms of

predicting risk for future disease. However, only a causal

biomarker may be appropriate as a target of therapy. The ulti-

mate proof of causality in humans is a randomized controlled trial

testing whether a treatment that alters the biomarker will affect

disease risk. However, as clinical trials are expensive and time-

consuming, it would be helpful to have evidence in humans prior

to engaging in a clinical trial.

In a technique termedMendelian randomization, DNA variants

are used to address the question of whether an epidemiological

association between a risk factor and disease reflects a causal

influence of the former on the latter (Davey Smith and Ebrahim,

2003; Gray and Wheatley, 1991; Katan, 1986). In principle, if

a DNA variant is known to directly affect an intermediate pheno-

type (e.g., a variant in the promoter of a gene encoding a

biomarker, affecting its expression) and the intermediate pheno-

type truly contributes to the disease, then the DNA variant

should be associated with the disease to the extent predicted

by: (1) the size of the effect of the variant on the phenotype

and (2) the size of the effect of the phenotype on the disease

(Musunuru and Kathiresan, 2010). If in an adequately powered

sample, the predicted association between the variant and

disease was not observed, it would argue against a purely causal

role for the intermediate phenotype in the pathogenesis of the

disease. The study design is akin to a prospective randomized

clinical trial in that the randomization for each individual occurs

at the moment of conception—genotypes of DNA variants are

randomly ‘‘assigned’’ to gametes during meiosis, a process

that should be impervious to the typical confounders observed

in observational epidemiological studies. For example, a parent’s

disease status or socioeconomic status should not affect which

of the parent’s two alleles at a given SNP is passed to a child,

with each allele having an equal (50%) chance of being trans-

mitted via the gamete to the zygote. Thus,Mendelian randomiza-

tion should be unaffected by confounding or reverse causation.

Mendelian randomization has potential shortcomings, including:

(1) the technique is only as reliable as the robustness of the

estimates of the effect sizes of the variant on the phenotype

and of the phenotype on disease and (2) it assumes that the

DNA variant does not influence the disease by means other

than the intermediate phenotype being studied (pleiotropy),
which may not be true. Nevertheless, Mendelian randomization

has the potential to be as informative as a traditional randomized

clinical trial.

Several Mendelian randomization studies have confirmed

a causal relationship between LDL cholesterol and coronary

artery disease. Nonsense variants in the PCSK9 gene that signif-

icantly reduce plasma LDL cholesterol concentrations were

observed to be associated with reduced incidence of coronary

artery disease in an African American cohort (Cohen et al.,

2006). Similarly, in European Americans, a common missense

variant in PCSK9 associated with lower LDL cholesterol levels

was also found to be associated with lower risk of MI. These

observations suggested that lower LDL cholesterol is sufficient

to provide protection against coronary artery disease. Similar

to LDL cholesterol, several recent genetic studies have con-

firmed prior observations that plasma lipoprotein(a) causally

relates to coronary artery disease (Clarke et al., 2009; Kamstrup

et al., 2009).

Unlike the results with plasma LDL cholesterol concentrations

and plasma lipoprotein(a), three recent, large Mendelian

randomization studies of C-reactive protein gene (CRP) variants

that affect plasma CRP concentrations, performed in thousands

of individuals, did not show an association between these vari-

ants and ischemic vascular disease or coronary artery disease

(Elliott et al., 2009; Wensley et al., 2011; Zacho et al., 2008). It

is unlikely that these studies were confounded or affected by

pleiotropy, as the tested variants were within the CRP gene itself

rather than being in other loci that might secondarily affect

CRP levels. Although these studies cannot definitively rule out

a causal role of CRP in cardiovascular disease, they strongly

suggest that high CRP levels are indirectly rather than directly

related to coronary artery disease.

A parallel line of genetic evidence also casts doubt on the

notion that inflammatory biomarkers such as CRP are critical

mediators of MI and coronary artery disease. Of 33 loci most

highly associated with MI and coronary artery disease (Table 2),

nine are related to plasma LDL cholesterol or lipoprotein(a),

arguing for a strong causal relationship between LDL (or a modi-

fied LDL particle such as lipoprotein(a)) and disease (Schunkert

et al., 2011). None of the other 24 loci are clearly related to

inflammation. Overall, with the recent explosion in our ability to

measure both soluble biomarkers (including metabolites and

proteins) and genetic variation, Mendelian randomization will

likely be an increasingly utilized approach to distinguish causal

biomarkers from noncausal ones.

Next Generation of Approaches
Massively Parallel Sequencing as a Discovery Tool

As described above, considerable progress has been made in

correlating genotype to phenotype for both Mendelian and

common, complex diseases over the past several decades.

Over the next decade, we are in a unique position to ‘‘finish the

job.’’ For Mendelian diseases, the goal is nothing short of

attempting to solve all Mendelian diseases not yet mapped.

For common, complex diseases, the goal is to extend the range

of genetic variation evaluated from common (>1:20 frequency)

to low-frequency (1:1,000–1:20 frequency) and very rare

(<1:1,000 frequency).
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Table 2. Genetic Loci Mapped by GWAS for Myocardial Infarction or Coronary Artery Disease

Unique

Locus Chr SNP

Risk Allele

Frequency

Odds Ratio

(95% CI) per

Risk Allele

Genes of Interest

within or Near

Associated

Interval

Association of SNP

or Proxy with Other

Cardiovascular

Phenotypes References

Also associated with established risk factor—plasma LDL cholesterol

1 1p13 rs599839 78% 1.11 (1.08–1.15) CELSR2, PSRC1,

SORT1

eQTL for SORT1, CELSR2,

and PSRC1 transcript

levels in liver

(Samani et al., 2007;

Schunkert et al., 2011)

2 19p13 rs6511720 89% 1.18 (1.11–1.25) LDLR (IBC 50K CAD

Consortium, 2011;

Kathiresan et al., 2009a)

3 1p32 rs11206510 82% 1.08 (1.05–1.11) PCSK9 (Kathiresan et al., 2009a)

4 6q25 rs3798220 2% 1.51 (1.33–1.70) LPA lipoprotein(a) (Clarke et al., 2009)

4 6q26 rs10455872 7% 1.68 (1.43–1.98) LPA lipoprotein(a) (Clarke et al., 2009)

5 9q34 rs579459 21% 1.10 (1.07–1.13) ABO venous thromboembolism,

ACE enzyme activity,

plasma E-selectin level,

plasma vWF level,

among others

(Reilly et al., 2011;

Schunkert et al., 2011)

6 11q23 rs964184 13% 1.13 (1.10–1.16) ZNF259, APOA5,

APOA1

triglycerides,

HDL cholesterol

(Schunkert et al., 2011)

7 8q24 rs17321515 53% 1.06 (1.03–1.10) TRIB1 triglycerides,

HDL cholesterol

(IBC 50K CAD Consortium,

2011; Varbo et al., 2011)

8 2p21 rs4299376 32% 1.07 (1.04–1.11) ABCG5, ABCG8 serum phytosterols (IBC 50K CAD Consortium,

2011; Teupser et al., 2010)

9 19q13 rs2075650 14% 1.14 (1.09–1.19) APOE (IBC 50K CAD

Consortium, 2011)

Also associated with established risk factor—blood pressure

10 12q24 rs3184504 44% 1.07 (1.04–1.10) SH2B3 LDL cholesterol, platelet

count, plasma eosinophil

count, among others

(Gudbjartsson et al., 2009;

Schunkert et al., 2011)

11 10q24 rs12413409 89% 1.12 (1.08–1.16) CYP17A1,

CNNM2, NT5C2

intracranial aneurysm (Schunkert et al., 2011;

Yasuno et al., 2010)

Unknown mechanism by which variant confers risk for myocardial infarction or coronary artery disease

12 9p21 rs4977574 46% 1.29 (1.23–1.36) CDKN2A,

CDKN2B, ANRIL

coronary artery calcification,

intracranial aneurysm,

abdominal aortic

aneurysm, among others

(Wellcome Trust Case

Control Consortium, 2007;

Helgadottir et al., 2007;

McPherson et al., 2007)

13 21q22 rs9982601 15% 1.18 (1.12–1.24) SLC5A3, MRPS6,

KCNE2

eQTL for MRPS6

transcript level in blood

(Kathiresan et al., 2009a)

14 1q41 rs17465637 74% 1.14 (1.09–1.20) MIA3 (Samani et al., 2007)

15 10q11 rs1746048 87% 1.09 (1.07–1.13) CXCL12 plasma CXCL12 level (Samani et al., 2007)

16 6p24 rs12526453 67% 1.10 (1.06–1.13) PHACTR1 coronary artery calcification (Kathiresan et al., 2009a)

17 2q33 rs6725887 15% 1.14 (1.09–1.19) WDR12, NBEAL1 eQTL for NBEAL1 transcript

level in aortic media

(Kathiresan et al., 2009a)

18 3q22 rs9818870 18% 1.12 (1.07–1.16) MRAS eQTL for MRAS transcript

level in aortic media

(Erdmann et al., 2009)

19 1p32 rs17114036 91% 1.17 (1.13–1.22) PPAP2B (Schunkert et al., 2011)

20 6p21 rs17609940 75% 1.07 (1.05–1.10) ANKS1A (Schunkert et al., 2011)

21 6q23 rs12190287 62% 1.08 (1.06–1.10) TCF21 eQTL for TCF21 transcript

level in liver, fat

(Schunkert et al., 2011)

22 7q32 rs11556924 62% 1.09 (1.07–1.12) ZC3HC1 (Schunkert et al., 2011)

23 13q34 rs4773144 44% 1.07 (1.05–1.09) COL4A1, COL4A2 (Schunkert et al., 2011)

24 14q32 rs2895811 43% 1.07 (1.05–1.10) HHIPL1 (Schunkert et al., 2011)
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Table 2. Continued

Unique

Locus Chr SNP

Risk Allele

Frequency

Odds Ratio

(95% CI) per

Risk Allele

Genes of Interest

within or Near

Associated

Interval

Association of SNP

or Proxy with Other

Cardiovascular

Phenotypes References

25 15q25 rs3825807 57% 1.08 (1.06–1.10) ADAMTS7 (Reilly et al., 2011;

Schunkert et al., 2011)

26 17p13 rs216172 37% 1.07 (1.05–1.09) SMG6 (Schunkert et al., 2011)

27 17p11 rs12936587 56% 1.07 (1.05–1.09) RASD1, PEMT,

RAI1

eQTL for RASD1 and

PEMT transcript levels

in monocytes

(Schunkert et al., 2011)

28 17q21 rs46522 53% 1.06 (1.04–1.08) UBE2Z eQTL for UBE2Z transcript

level in blood

(Schunkert et al., 2011)

29 7q22 rs10953541 80% 1.08 (1.05–1.11) BCAP29, DUS4L (C4D, 2011)

30 10p11 rs2505083 38% 1.07 (1.04–1.09) KIAA1462 (C4D, 2011)

31 11q22 rs974819 32% 1.07 (1.04–1.09) PDGFD eQTL for PDGFD transcript

level in aortic media

(C4D, 2011)

32 10q23 rs1412444 42% 1.09 (1.07–1.12) LIPA eQTL for LIPA transcript

level in monocytes

(C4D, 2011;

Wild et al., 2011)

33 6p24 rs6903956 7% 1.65 (1.44–1.90) c6orf105 (Wang et al., 2011)
Dramatic advances in sequencing and genotyping make such

ambitious goals feasible. Next-generation sequencing platforms

have markedly decreased the cost of DNA sequencing when

compared with Sanger sequencing. Hybridization approaches

have enabled selection of the portion of the genome that is

protein coding (roughly 1%of the 3.2 billion bases), the so-called

‘‘exome.’’ Sequencing just the exome (rather than the entire

genome) is well justified in the search for genetic causes of

rare inherited disorders (Ng et al., 2010). This is because the

majority of alleles that are responsible for Mendelian disorders

disrupt protein-coding sequence, and a large fraction of rare

missense mutations in the human genome are predicted to be

deleterious (Kryukov et al., 2007; Stenson et al., 2009).

Next-Generation Sequencing and Mendelian Disease

Over the past three years, whole-exome and whole-genome

sequencing have been successfully utilized to identify new

genes for several Mendelian forms of CVD. Most studies have

sequenced the exomes of one or a few individuals affected

with the disorder. Variants seen in these individuals are typically

compared with those from reference individuals (unaffected

individuals who are family members or unrelated). Variants that

are shared by affected individuals and are not present in the

unaffected population are considered causal candidates. With

this strategy, investigators identified ANGPTL3 mutations as

a cause of familial combined hypolipidemia, BAG mutations for

dilated cardiomyopathy, NT5E mutations for arterial calcifica-

tion, KCNJ5 mutations for hereditary hypertension due to aldo-

sterone-producing adenomas, and KLHL3 or CUL3 mutations

for hypertension and hyperkalemia (Boyden et al., 2012; Choi

et al., 2011; Musunuru et al., 2010a; Norton et al., 2011; St Hilaire

et al., 2011).

The discovery ofKLHL3 as a cause of pseudohypoaldosteron-

ism type II, a Mendelian form of hypertension, is an elegant

example of the value of exome sequencing (Boyden et al.,

2012). The gene was identified by directly sequencing the
exomes of 11 unrelated index cases with pseudohypoaldoster-

onism type II and contrasting with exome sequences from 699

population-based, unrelated controls without hypertension.

Of 22 case chromosomes, 5 harbored a rare, protein-altering

mutation in KLHL3, whereas only 2 of 1,398 control chromo-

somes did so, leading to a low probability that this observation

was due to chance (p = 1 3 10�8). Such successes have raised

expectations for the exome sequencing approach.

However, the true yield of exome sequencing in solving

Mendelian disorders is difficult to know at present, as negative

results have not been routinely reported (Bamshad et al.,

2011). It can be difficult to arrive at a single causal mutation after

exome sequencing due to the following reasons. First, the causal

variant may not be protein coding. Second, the causal variant

may be protein coding, but the relevant gene may not be

successfully captured and sequenced. Approximately 5%–

10% of all exons may be poorly sequenced due to genomic

features such as high GC content. Third, if the causal mutation

is not fully penetrant, it will be present in individuals who are

both phenotypically affected and unaffected and thus may be

‘‘filtered’’ out. Fourth, the segregation of a phenotype in a family

may be due to nongenetic factors rather than a single gene of

large effect. This problem is particularly true for CVD conditions

that are common in the population like MI and atrial fibrillation.

If one observes a multigeneration family in which multiple indi-

viduals are affected with MI, is this pattern due to a new Mende-

lian gene or poor lifestyle habits shared by the family? Fifth, in

contrast to single-nucleotide substitutions, methods for calling

small insertion-deletions and copy number changes from

short-read sequence data are in need of improvement. If the

causal mutation is a one or two base-pair insertion or deletion,

it might be overlooked. Finally, exome sequencing and filtering

are more efficient at reducing the number of candidate causal

mutations for recessive rather than dominant disorders. After

exome sequencing and filtering for a dominantly inherited
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Figure 2. Association Signals Arising from Rare Variants
(A and B) Each line represents DNA sequence from a different individual,
and each circle represents a DNA sequence variant. Each color denotes a
DNA sequence variant allele at a different nucleotide site.
(A) ‘‘Low-frequency’’ variants can be defined as variants in frequency between
1:1000 and 1:20. Each variant can be assayed typically by genotyping and
tested for association individually using single marker tests of association.
(B) ‘‘Very Rare’’ variants can be defined as variants with frequency less than
1:1,000, and often the variant may be seen only in a single person (i.e.,
a singleton). Variants in this frequency range need to be grouped together and
tested in aggregate. Association signals from a burden of such very rare
variants are typically best validated using resequencing of the same genomic
interval in additional individuals. Figure adapted from Manolio et al. (2009).
condition, the number of mutations compatible with causing

disease can be large.

Next-Generation Sequencing and Common,

Complex Disease

What about exome or whole-genome sequencing to identify rare

variants that confer a large effect on common, complex traits and

diseases? The optimal study design for complex traits will

depend on the frequency of the genetic variant(s) that are the

source of the association signal. Though the term ‘‘rare’’ is

used in the literature to refer to variants less than 1:20 frequency,

we find it useful to distinguish between two types of ‘‘rare’’ vari-

ants, those that range in frequency from 1:1,000 to 1:20 and

are denoted as ‘‘low-frequency’’ and those that are < 1:1,000

frequency and are denoted as ‘‘very rare’’ (Figure 2). This cate-

gorical distinction is important because the approach to discover

and replicate the two signals can differ.

For low-frequency variants, it is now possible to catalog

nearly all coding variants segregating in a population at a

frequency of 1:1,000 or greater, directly genotype these vari-

ants, and test for association with disease (Figure 2A). For

example, data from 12,000 human exome sequences have

been mined, and all coding sites where the alternate allele

is seen at least three times (twice for nonsense and splice)

and in two separate studies have been cataloged. Investigators

have designed a custom genotyping array—the ‘‘Exome

Chip’’ —to directly genotype these �300,000 variants at low

cost. This genotyping array will allow for comprehensive

testing of low-frequency coding variants for association with

cardiovascular traits and diseases.
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In contrast, a signal emerging from a burden of very rare vari-

ants can best be discovered by sequencing and can often only

be replicated by sequencing (Figure 2B). The promise and

challenges of this approach are evident in the candidate gene

sequencing studies completed over the past few years. In

seminal work, Cohen, Hobbs, and colleagues tested the hypoth-

esis that rare, coding variation in candidate genes contributes to

plasma HDL cholesterol variation in the population (Cohen et al.,

2004). Three genes that cause Mendelian forms of low HDL

cholesterol (ABCA1, APOA1, and LCAT) were sequenced in

128 individuals ascertained from the lowest 5th percentile

(mean, 31 mg/dl) and in 128 individuals from the highest 95th

percentile of the HDL cholesterol distribution (mean, 91 mg/dl)

in a population-based cohort study. The investigators aggre-

gated rare variants that met three criteria: (1) present within a

gene, (2) changed amino acid, and (3) exclusively present in

either the low or high group. Twenty such rare alleles were found

in the low group, and two such rare alleles were found in the

high group (Fisher’s exact, p = 0.00006). This observation was

replicated in an independent study, and additionally, cells from

mutation carriers had reduced cholesterol efflux rates, a key

function of ABCA1. This study established that rare nonsynony-

mous mutations in ABCA1 with large phenotypic effects

contribute to low HDL cholesterol in the population.

The challenge now is to utilize sequencing to enable de

novo discovery of new genes that contribute to complex traits.

It has become practical to extend the experiment described

above from the sequencing of three genes to �20,000 genes.

Exomes can be rapidly sequenced, and single-nucleotide

substitutions can be accurately called; however, will such

sequencing for complex traits readily yield new discoveries?

The key barriers at present are statistical. DNA sequence vari-

ants that are very rare (e.g., a mutation seen in a single person

or a singleton) cannot be tested individually for association

with phenotype. Instead, they need to be aggregated with

similar rare variants to be tested collectively for association

with phenotype (Figure 2B).

This requirement immediately brings forward several ques-

tions. Do we only aggregate variants within a single gene, or

should it be extended to collections of genes in a pathway? Do

we only group variants of a certain annotation—nonsynony-

mous, nonsense, synonymous, splice site, etc.? Should we

impose a frequency threshold to define ‘‘rare’’ (i.e., only aggre-

gate variants that are less than 1% frequency), and if so, what

should this frequency threshold be? The answers to many of

these questions are in development. We refer the reader to

several recent publications that address these issues (Li and

Leal, 2008; Madsen and Browning, 2009; Neale et al., 2011;

Price et al., 2010).

Another key question is statistical power. What sample size

will be required to identify a newdisease gene based on a burden

of rare coding mutations? An early computer simulation study

conducted by Kryukov, Sunyaev, and colleagues suggested

that 10,000 individuals (5,000 drawn from the lowest 5th percen-

tile and 5,000 above the 95th percentile) will be needed to

discover another gene with a mutation burden similar to

ABCA1 (Kryukov et al., 2009). The principal reason for this large

sample size is the stringent statistical threshold that needs to be



Figure 3. Estimate of Sample Sizes Required for Gene Discovery in Exome Sequencing Studies of Complex Traits
Extrapolations were performed using gene resequencing counts from published candidate gene studies. Fisher’s exact test was performed for gene burden
testing on mutation carrier status within each study. The red horizontal line indicates the genome-wide p value threshold (p = 2.53 10�6) for gene burden of rare
variants with minor allele frequencies < 1%. The extrapolations show that thousands of samples are needed to exceed statistical significance at a genome-wide
level. Rare variant counts for ANGPTL3, ANGPTL4, and ANGPTL5 for plasma triglycerides were obtained from Romeo and colleagues (Romeo et al., 2009);
APOA5, APOB, GCKR, and LPL for hypertriglyceridemia from Johansen and colleagues (Johansen et al., 2010); SLC12A3/SLC12A1/KCNJ1 from Ji and
colleagues (Ji et al., 2008).
imposed when testing 20,000 genes. A first approximation of the

appropriate statistical threshold would be Bonferroni correction

for all of the genes sequenced (p = 2.53 10�6). Our extrapolation

of effect sizes and frequencies from published studies shows

(Figure 3) that thousands of individuals are required to reach

acceptable statistical power.

Statistical power would improve dramatically if we were

able to distinguish rare mutations that affected protein function

from those that did not. The bulk of discovered rare mutations

are missense. Of all missense, it is estimated that �1/5 are as

deleterious as nonsense mutations, �1/2 are mildly deleterious,

and �1/4 do not affect protein function (Kryukov et al., 2007).

If one restricted mutation counts to only functional mutations,

noise would be removed (MacArthur et al., 2012). At present,

functional consequence of variants can be predicted based on

comparative sequence analysis and protein structure analysis.

Several software tools are available, and the accuracy of these

methods remains a subject of debate (Sunyaev et al., 2001).

An alternative method is experimental evaluation of whether

a given mutation is functional. Such experimental evaluation is

possible for genes with known function and where that function

can be readily evaluated with moderate- or high-throughput

approaches. However, such evaluation of mutations assumes

that the parameter evaluated is an appropriate surrogate for the
mechanism by which the gene impacts the human phenotype.

For complex phenotypes such as MI that arise after decades of

pathology, it is often difficult to know whether this is the case.

Nevertheless, distinguishing functional versus neutral missense

mutations will be a key to improving statistical power.

Modeling Human Genetic Disease in Reprogrammed
Cells
As an increasing number of genetic variants become associated

with human disease, it will be essential to develop effective

and accurate model systems to understand the mechanism of

disease. This step is a prerequisite to translate genetic findings

into new targets for therapy. Animal models have traditionally

been used to mimic human mutations through gene knockin

approaches or study of null mutations (Bruneau et al., 2001;

Lindsay et al., 2001). Though this approach has been of value

and has led to many discoveries, it is more common that mouse

models fail to effectively recapitulate the human phenotype. This

situation is even true for Mendelian traits, wherein heterozygous

deletion of human disease genes is often well tolerated in

mice, whereas homozygous deletions can have catastrophic

consequences, failing to model the human condition. For many

human disease genes, this has been a bottleneck, limiting the

value of gene-hunting approaches described above.
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Figure 4. Modeling Human Genetic Disease in Reprogrammed Cells
Reprogrammed cells derived from skin fibroblasts or blood cells of individuals
with genetic variants associated with disease can be used for disease
modeling and drug discovery and to determine the impact of sequence vari-
ants on cellular biology. Reprogramming to induced pluripotent stem (iPS)
cells and subsequent directed differentiation to relevant cell types can yield
large numbers of human disease-related cell types for investigation. Specific
genetic variants can also be engineered into human pluripotent stem cells
using zinc-finger nucleases or TALENs to generate iPS or embryonic stem (ES)
cells harboring disease-associated variants. Future approaches involving
transdifferentiation may allow for a more direct approach to generate relevant
cell types for study of CVD. In some cases, diseases will be cell autonomous,
but other cases may require coculture of two or more cell types to recapitulate
the disease process.
The recent revolution in cellular reprogramming technology

provides a potential solution to the need for disease modeling

(Figure 4). The striking observation by Yamanaka and colleagues

that human adult somatic cells could be reprogrammed into

a pluripotent state by expressing four transcription factors not

only revolutionized the field of stem cell biology, but also has

major consequences for the study of human genetics (Takahashi

et al., 2007). Investigators can now reprogram skin or blood cells
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from patients with defined genetic variants/mutations into

induced pluripotent stem (iPS) cells and can then differentiate

the iPS cells into the specific cell type affected by disease.

This approach provides an unprecedented opportunity to inves-

tigate the consequences of human genetic variation on cellular

phenotypes that may contribute to disease. There have been

several reports of partial modeling of CVD using human iPS cells

in the last 2 years, although success to date has been limited to

diseases with discrete cell-autonomous cellular defects. We will

consider a few examples below and highlight the advantages

and limitations of this approach.

Autosomal-dominant long QT syndrome (LQTS) that predis-

poses to cardiac arrhythmias and sudden death involves

single-gene mutations of sodium or potassium channels that

provide a discrete and quantitative phenotype in iPS-derived

cardiomyocytes. In LQTS, repolarization of cardiomyocytes is

delayed, resulting in a prolonged action potential duration.

Several groups have reported successful generation of iPS-

derived cardiomyocytes from patients with LQTS, and an elon-

gation of the action potential duration has been reported for

a subset of genetically induced LQTS (Itzhaki et al., 2011; Moretti

et al., 2010; Yazawa et al., 2011). LQTS can also be drug induced

in selected individuals, and pluripotent stem cell-derived cardio-

myocytes appear to be an effective model system to detect

prolongation of action potentials due to cardiotoxic drugs

(Braam et al., 2010). It is exciting to consider that identification

of common genetic variants that predispose to drug-induced

LQTSmight bemodeled in iPS-derived cardiomyocytes, thereby

allowing a system in which to screen for this toxic side effect

prior to in vivo use of new drugs.

Despite these successes, certain types of LQTS have been

more difficult to model due to the incomplete maturation of

iPS-derived cardiomyocytes and appropriate expression of ion

channels in a consistent manner. It is possible that recent direct

reprogramming strategies involving transdifferentiation, which

do not involve a progenitor intermediate, will allow modeling of

diseases in which a mature cell type is required (Ieda et al.,

2010). The inability to expand mature, transdifferentiated cells

is currently a rate-limiting factor for this approach, but future

improvements in efficiency of reprogramming may overcome

this hurdle.

Another example of iPS-based modeling recently came from

the study of Noonan and LEOPARD syndromes, autosomal-

dominant conditions that involve pulmonary valve stenosis and

hypertrophic cardiomyopathy in a subset of patients (Gelb and

Tartaglia, 2011). The genetic cause of Noonan and LEOPARD

syndromes involves activating mutations in members of the

Ras pathway. Correspondingly, iPS-derived cardiomyocytes

from patients with cardiomyopathy associated with LEOPARD

syndrome exhibit higher levels of Ras signaling that appear to

contribute to excessive growth of cardiac cells (Carvajal-Vergara

et al., 2010). Though such findings successfully model the

pathway known to be affected, the ultimate goal will be to

identify new therapeutics that can disrupt abnormal pathways

and restore normal physiology. This has remained elusive thus

far, in part because most iPS-based disease models lead

to broad variability in phenotype, whereas high-throughput

screening assays typically require a consistent phenotype with



a narrow range of variability. As protocols for generating iPS

cells improve and directed differentiation methods become

more consistent, ‘‘disease in a dish’’ models promise to alter

the landscape of drug discovery (Figure 4).

Besides modeling the Mendelian syndromes described

above, another potential use of iPS technology will be to anno-

tate the function of SNPs identified by GWAS or rare mutations

discovered by sequencing. iPS cells are currently being gener-

ated from large populations with defined genetic variants and

CVD in the hope that certain aspects of the phenotype could

be modeled in iPS-derived cells. It may prove difficult to identify

consistent phenotypic differences associated with genetic

variants of small effect; however, it is possible that the genetic

background present in affected individuals will be sufficient to

reveal a cellular defect.

The contribution of individual sequence variants in the

context of complex genetic background issues can be interro-

gated through the use of recently developed DNA correction

approaches in human pluripotent stem cells. The use of zinc-

finger nucleases and transcription activator-like effector

nuclease (TALEN) technology to specifically introduce or re-

move a sequence variant in stem cells will reveal the contribu-

tion of individual variants to cellular phenotypes (Yusa et al.,

2011). Addition of environmental stresses to the cellular system

may be necessary to provoke phenotypes and will be an impor-

tant tool in disease modeling in iPS cells. Such studies are

currently underway, and we look forward to the challenges

and opportunities offered by this new approach to modeling

human genetic variants.

Conclusions
The tools to decode human genetic variants on a large popula-

tion scale have finally arrived and should begin to reveal the

genetic contribution to disease at an exponential pace. Rigorous

analysis of the functional consequences of sequence variants

associated with disease will be critical, and new approaches

leveraging stem cell technologies may facilitate study of human

variants in relevant human cell types. Ultimately, the conver-

gence of human genetics with functional biology will reveal

new therapeutic targets for cardiovascular disease and will

stimulate a new generation of drug discovery efforts.
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