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SUMMARY

Female human induced pluripotent stem cell (hiPSC)
lines exhibit variability in X-inactivation status. The
majority of hiPSC lines maintain one transcriptionally
active X (Xa) and one inactive X (Xi) chromosome
from donor cells. However, at low frequency, hiPSC
lines with two Xas are produced, suggesting that
epigenetic alterations of the Xi occur sporadi-
cally during reprogramming. We show here that
X-inactivation status in female hiPSC lines depends
on derivation conditions. hiPSC lines generated by
the Kyoto method (retroviral or episomal reprogram-
ming), which uses leukemia inhibitory factor (LIF)-
expressing SNL feeders, frequently had two Xas.
Early passage Xa/Xi hiPSC lines generated on non-
SNL feeders were converted into Xa/Xa hiPSC lines
after several passages on SNL feeders, and supple-
mentation with recombinant LIF caused reactivation
of some of X-linked genes. Thus, feeders are a signif-
icant factor affecting X-inactivation status. The effi-
cient production of Xa/Xa hiPSC lines provides
unprecedented opportunities to understand human
X-reactivation and -inactivation.

INTRODUCTION

Female human induced pluripotent stem cell (hiPSC) and human

embryonic stem cell (hESC) lines with two active X chromo-

somes (Xas) occur infrequently, and Xa/Xa hESC lines often

become Xa/Xi (Bruck and Benvenisty, 2011; Cheung et al.,

2011; Fan and Tran, 2011; Hanna et al., 2010; Hoffman et al.,

2005; Lagarkova et al., 2010; Lengner et al., 2010; Marchetto

et al., 2010; Pomp et al., 2011; Shen et al., 2008; Silva et al.,

2008; Tchieu et al., 2010; Teichroeb et al., 2011). However,

some Xa/Xa hESC lines do not exhibit X-inactivation upon differ-

entiation (Hoffman et al., 2005). The reasons for this variability

are not fully understood, but it is known that derivation and

culture conditions affect epigenetic features of X chromosomes
(Hanna et al., 2010; Lengner et al., 2010; Pomp et al., 2011;Ware

et al., 2009).

This study investigated the X-inactivation status of hiPSCs

derived by the Kyoto method, which uses SNL feeder cells that

produce high levels of leukemia inhibitory factor (LIF) (McMahon

and Bradley, 1990; Nakagawa et al., 2008; Takahashi et al.,

2007). We report here that the Xi of donor fibroblasts was

frequently reactivated in hiPSC lines generated on SNLs. Early

passage hiPSC lines were Xa/Xi and converted into Xa/Xa lines

upon continued passage on SNL feeders, but not on non-SNL

feeders. Lines cultured on non-SNL feeders supplemented

with recombinant (r)LIF had features of X-reactivation. These

data indicate that feeder cells significantly affect X-inactivation

status and that LIF contributes to reactivation. Reliably gener-

ating hiPSCs with the desired Xa/Xi or Xa/Xa pattern would be

useful in disease modeling and clinical applications.

RESULTS

X-Linked Genes Are Highly Expressed in Female hiPSC
Lines
We used microarrays to examine X-linked gene expression in

hiPSC lines derived from differentiated H9 ESCs (H9-reporter)

(Figures 1A and 1B, S1A–S1I available online; and Table S1) or

human fibroblasts (hFibs) (Figures 1D and 1E, S1J–S1Q; and

Table S1). Approximately 40% of X-linked genes were ex-

pressed at >1.5-fold levels in female hiPSC lines than in Xa/Xi

or XY hESC lines (Figure 1C). Plotting the expression ratios

of female hiPSCs and hESCs onto the human genome

revealed that the X was the only chromosome with chromo-

some-wide upregulation in hiPSCs (Figure 1F). Thus, X-linked

genes are specifically upregulated in female hiPSCs derived

from differentiated hESCs or hFibs, suggesting X-reactivation

in female hiPSCs.

Two Xs Are Active in Female hiPSCs
We next examined expression of two X-linked genes, PGK1 and

XIST, by fluorescent in situ hybridization (FISH). We found

that >60%of hiPSCs had two sites of nuclear transcript accumu-

lation for PGK1, in contrast to an Xa/Xi hESC line, which had only

one site in �60% of cells (Figures 2A and 2B). XIST RNA coating

and high expression were detected in Xa/Xi hESCs, but not in
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Figure 1. X-Linked Genes Are Highly Ex-

pressed in Female hiPSC Lines

(A and D) Experimental design to generate hiPSC

lines from H9 ESCs (A) and from hFibs (D). The

X-inactivation status of the each cell line is also

shown. The characterizations of the hiPSC lines

are shown in Figure S1 and Table S1.

(B and E) Heatmaps of relative expression levels of

the X-linked genes. All cell lines were cultured in

identical conditions. RNA was extracted from H9r

iPSC lines at p3 and female hiPSC lines from hFibs

at >p15.

(C) Percentage of all X-linked genes (probes) that

are upregulated (red) or downregulated (green) by

more than 1.5-fold in the H9r iPSC lines and female

(Xa/Xi) hESC lines (average data among ESI03, H9-

reporter, and H9) or the male (XY) ESC H1 cell line.

(F) Gene expression ratios on the genome. The

expression ratios between female hESC (average

data among ESI03, H7, H9, and H9-reporter) and

hiPSC (average data among K-3F-1, K-3F-2, and

3S-5F-4) lines are plotted on human genome. Blue

bars indicate where each gene maps. Blue bars

above the red midline show highly expressed

genes in the hESC lines. Blue bars below the

midline show highly expressed genes in the hiPSC

lines. The height of bars indicates the expression

ratio of each gene. Chromosome numbers are

shown on top of the diagram. The Y chromosome

is excluded in this assay. The X chromosome is

expanded in the inset.

In (B) and (E), gene expression values for each

gene are shown in log2 scale.
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hiPSCs (Figures 2A and 2C). In addition, a majority of hiPSCs

exhibited RNA polymerase II (polII) staining on both Xs, while

hESCs exhibited staining on one X (Figure 2D), indicating that

these hiPSC lines have two Xas.

The X-linked gene WDR44 showed greater levels of expres-

sion in hiPSCs (H9r iPSCs), which were derived from differenti-

ated H9-reporter cells, than in H9-reporter ESCs (Figure 2E,

left) and was biallelically expressed only in H9r iPSCs as

detected by single nucleotide polymorphism (SNP) sequencing

(Figure 2E, right). Bisulfite sequencing of the WDR44 promoter

showed that hESCs had a mixed methylation pattern character-

istic of Xa/Xi cell lines (Heard and Disteche, 2006; Shen et al.,

2008), while hiPSCs were hypomethylated (Figure 2F).
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Finally, we used X to autosome expres-

sion ratios (X/A ratios): Xa/Xi cell lineshave

lower X/A ratios than Xa/Xa cell lines

(Bruck and Benvenisty, 2011; Lin et al.,

2007; Nguyen and Disteche, 2006). X/A

ratios derived from deposited microarray

data sets from hiPSC and hESC lines in

which X-inactivation status is already

characterized (Hannaet al., 2010;Lengner

et al., 2010; Tchieu et al., 2010) were well

correlated with X-inactivation status (Fig-

ure 2G, left three lanes). We found that X/

A ratios from our female hiPSCs were

comparable to those of reported Xa/Xa

cells. These results confirmed X-reactiva-
tion inhiPSCsand indicate thatX/A ratiosprovideausefulmethod

of identifying potential Xa/Xa hiPSC lines.

One X Is Inactivated upon Differentiation of Female
hiPSCs
We analyzed a pure population of cells differentiated into endo-

thelial cells. Xa/Xa hiPSC-derived endothelial cells exhibited low

X/A ratios, comparable to primary endothelial cells and those

differentiated from male or Xa/Xi hESCs (Figure 2H). XIST RNA

was not detected, while only a single site of nascent PGK1 tran-

script accumulation was detected in >60% of Xa/Xa-derived

endothelial cells (Figures 2I and 2J). These results indicate that

one X is silenced after differentiation of Xa/Xa hiPSCs.
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Prolonged Culture Promotes X-Reactivation in hiPSCs
Derived and Propagated on SNL Feeders
We analyzed X-inactivation status in more hFib-derived hiPSC

lines generated on SNLs by three- or four-factor viral reprogram-

ming or integration-free episomal vector reprogramming (Okita

et al., 2011) (Table S1). At early passage (passage 5, or p5),

X/A ratios of all lines analyzed were consistent with those of re-

ported Xa/Xi lines (Figure 3A, at p5 on SNLs). At late passage

(>p15), 20 of 23 lines exhibited high X/A ratios (X/A > 0.3),

comparable to those reported for Xa/Xa cells (Figure 3A, at

>p15 on SNLs). Two cell lines at >p15 were further analyzed

for X-inactivation by FISH, and the majority of cells showed

two sites of nuclear transcript accumulation for PGK1 and no

XIST RNA accumulation, indicating that these lines are also Xa/

Xa (Figure 3B). Further, Xa/Xa status was maintained with

continued passage (Table S1). These results suggest that our

method frequently produces stable Xa/Xa hiPSCs.

By microarray analysis, XIST expression in all female hiPSCs

on SNLs at early passage was similar to that of the donor Xa/Xi

hFibs. At late passage, XIST was downregulated. We confirmed

these findings by quantitative RT-PCR (Figure 3C). Also, SNP

sequencing revealed that two X-linked genes (TSPAN6 and

FRMPD4) are monoallelically expressed at early passage but

biallelically expressed at late passage of hiPSCs on SNLs (Fig-

ure 3D). These SNP sequencing results, together with the X/A

ratios and XIST expression, indicate that the Xi is silent at early

passage but is reactivated with continued propagation, concom-

itant with downregulation of XIST.

Feeder Cells Affect X-Inactivation Status in Female
hiPSCs
Most female hiPSC lines reprogrammed with our protocol were

Xa/Xa, but other laboratories reported Xa/Xi hiPSC lines derived

using the same reprogramming factors (Hanna et al., 2010;

Pomp et al., 2011; Tchieu et al., 2010). A notable difference

between protocols is the type of feeder cells employed. We

used SNLs, which are immortalized mouse embryonic fibro-

blasts that express a LIF transgene (Takahashi et al., 2007), while

other laboratories predominantly use mouse primary embryonic

fibroblasts (MEFs) (Hanna et al., 2010; Pomp et al., 2011; Tchieu

et al., 2010). Thus, we analyzed female hiPSC lines generated on

non-SNLs, hFibs (Takahashi et al., 2009), or MEFs (Tchieu et al.,

2010) (Table S1). None of the hiPSC lines derived on non-SNLs

(0/12) had high X/A ratios (>0.3) at >p15 (Figure 3A, at >p15 on

non-SNLs). Three lines were analyzed by FISH, and the majority

of cells had only one site of PGK1 nascent mRNA accumulation

with or without XIST RNA coating (Figures 3E and 3F). Therefore,

hiPSCs generated on non-SNLs retain one Xi as reported (Pomp

et al., 2011; Tchieu et al., 2010).

SNLs Have a Role in X-Reactivation in Female hiPSCs
Since LIF is secreted by SNLs, we examined its role on X chro-

mosome-wide gene expression by our protocol. Female hiPSC

lines were initially generated on non-SNLs (hFibs or MEFs)

and transferred to SNLs or non-SNLs plus rLIF (Figure 4A).

For hiPSCs generated on hFibs, transfer occurred at p9. For

hiPSCs generated on MEFs, transfer occurred at p1, when

hiPSC colonies were initially picked. Female hiPSC lines

transferred to SNLs had increased X/A ratios, concomitant
with downregulated XIST and upregulated X-linked genes.

None of the sister lines continually cultured on non-SNLs had

substantially increased X/A ratios, suggesting they remained

Xa/Xi (Figures 4B–4D, S3A, and S3B). The two hiPSC lines

generated on MEFs and transferred to SNLs had X/A ratios

similar to those generated and cultured on SNLs and biallelic

expression of TSPAN6 and FRMPD4 (Figures 4C and 4E). While

the hiPSC lines generated on hFibs and transferred to SNLs had

increased X/A ratios, the ratios were lower than when hiPSCs

were derived exclusively on SNLs, which may be a consequence

of initial reprogramming on hFibs and/or the later transfer to

SNLs (Figure 4B). In support of the timing of transfer affecting

X-inactivation status, one of four hiPSC lines generated on

MEFs and transferred to SNLs at p4 or p7 had features of X-re-

activation (Figures S3D and S3E). Thus, culture on SNLs can

convert early passage Xa/Xi hiPSCs generated and cultured on

non-SNLs into Xa/Xa hiPSCs.

Two of four hiPSC lines generated on non-SNLs and trans-

ferred to non-SNLs plus rLIF had increased X/A ratios, concom-

itant with downregulation of XIST and upregulation of X-linked

genes (Figures 4B, 4C, 4F and S3A and S3B). In a line derived

on hFibs and transferred to hFibs plus rLIF at p9, the X/A ratio

was comparable to that of the sister line after transfer to SNLs

(Figure 4B). The line derived on MEFs and transferred to MEFs

plus rLIF at p1 had a lower X/A ratio than its sister line that was

transferred to SNLs at p1. While transfer to SNLs elicited biallelic

expression of FRMPD4 and TSPAN6 (Figure 4E), transfer to

MEFs plus rLIF caused biallelic expression of PGK1 (Figure 4G)

and FRMPD4, but not TSPAN6 (Figure 4H), suggesting that rLIF

promotes reactivation of a subset of X-linked genes.

Next we asked if the intermediate X/A ratio in hiPSCs cultured

on non-SNLs plus rLIF reflected intermediate X-linked gene

expression across the entire chromosome. We plotted expres-

sion levels of genes across the X from hiPSCs transferred to

either non-SNLs plus rLIF or SNLs normalized to the expression

of hiPSCs maintained on non-SNLs for the same number of

passages (Figure 4I for MEF hiPSCs and S3C for hFib hiPSCs).

There was variability across the X (Figure 4I). Some regions

were more similar between the MEF plus rLIF hiPSCs and MEF

hiPSCs and other regions were more similar between the MEF

plus rLIF hiPSCs and SNL hiPSCs, suggesting that rLIF

promotes full reactivation of a subset of X-linked genes. On the

remainder of the X, the MEF plus rLIF hiPSCs had expression

intermediate to MEF hiPSCs and SNL hiPSCs, which may reflect

upregulation of the Xa or X-reactivation upon addition of rLIF.

FRMPD4 lies in a region of intermediate expression, suggesting

that, while there is biallelic expression, the reactivated genes

may not be expressed as highly in MEF plus rLIF hiPSCs as

they are in SNL hiPSCs. Our results indicate that reprogramming

with SNL feeders promotes robust X-reactivation, and that LIF

may contribute to this epigenetic alteration of the Xi.

DISCUSSION

In this study, we showed that female hiPSCs derived by the

Kyoto method, using retroviral or episomal vectors, frequently

have two Xas. In female hiPSCs derived from hFibs, the Xi re-

mained silent at early passage, but reactivated later, concomitant

with downregulation of XIST. Since episomal reprogramming
Cell Stem Cell 11, 91–99, July 6, 2012 ª2012 Elsevier Inc. 93
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Figure 2. Two Xs Are Active in Female hiPSCs

(A) RNA FISH for PGK1 (green) and XIST (red) in hESCs and hiPSCs derived on SNLs.

(B) Graph showing the proportion of cells with 0, 1, or 2 sites of PGK1 nascent mRNA accumulation in Xa/Xi hESC (ESI03) and female hiPSC (K-3F-2 and 3S-5F-4)

lines.

(C) Relative expression levels of XIST. The expression levels of XIST were extracted from microarray data sets. The male ESC line H1 is used for normalization.

Female fibroblasts (hFib) from which the hiPSC lines were generated and Xa/Xi hESCs (ESI03) served as controls.

(D) Immuno-FISH. Representative images for localization of RNA polymerase II (RNA polII) (green) and X chromosomes (red) in the indicated cell lines. Arrows

show regions depleted of staining for RNA polII in which one of two X chromosomes localizes. The percentage of cells in which no RNA polll exclusion from an

X was observed is inset.
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(Okita et al., 2011) supported X-reactivation, neither viral integra-

tion nor continued expression of exogenous factors is necessary

for this process. Xa/Xa hiPSCs were poised for X-inactivation

upon differentiation. The high-frequency X-reactivation and

stable Xa/Xa status in hiPSCs derived with the Kyoto method

(17/20 retroviral, 3/3 episomal) contrasts with the sporadic or

lack of X-reactivation of other methods (Cheung et al., 2011;

Hanna et al., 2010; Kim et al., 2011; Lagarkova et al., 2010;

Marchetto et al., 2010; Mekhoubad et al., 2012; Pomp et al.,

2011; Tchieu et al., 2010). Thus, this method provides an unprec-

edented tool to understand epigenetic regulation of X chromo-

somes in human cells.

SNL Feeders Are Important for X-Reactivation
The Kyoto method uses SNL feeders to derive and maintain

hiPSCs. When MEFs or hFibs feeders were used, we did not

observe frequent production of Xa/Xa hiPSC lines. However,

early passage Xa/Xi hiPSCs generated and cultured on non-

SNLs could be converted into Xa/Xa after several passages on

SNLs, implicating SNLs in X-reactivation.

SNLs supported production of hiPSCs with two Xas, suggest-

ing a role for LIF in X-reactivation. Indeed, transfer into rLIF-

containing medium caused upregulation of X-linked genes and

increased X/A ratios in two of four hiPSC lines initially generated

on non-SNLs. While transfer to rLIF promoted upregulation of

X-linked genes, not all genes were upregulated to the same

extent as on SNLs, and some were not upregulated at all. Also,

not all genes assayed exhibited biallelic gene expression in

hiPSCs cultured with rLIF. Thus, culture with rLIF does not

have the same chromosome-wide effects that are seen with

culture on SNLs. Thus, SNLs may have activities in addition to

LIF that enable frequent and chromosome-wide X-reactivation.

One possible activity is glycosylation of LIF: glycosylated LIF

may have different roles from nonglycosylated LIF (Blanchard

et al., 1998), and rLIF is not glycosylated. Identification of such

activities, including LIF glycosylation, is an important future task.

Overexpression of OCT3/4, KLF2, and KLF4 in conjunction

with MAPKK and GSK3b inhibitors and rLIF stochastically

converts Xa/Xi hiPSCs into Xa/Xa hiPSCs (Hanna et al., 2010).

In this study, we showed that expression of exogenous OCT3/

4 and KLF4 during culture is not required for reactivation. While

our results suggest that LIF contributes to SNL-mediated
(E) WDR44 expression in the indicated cell lines was determined by RT-qPCR (

GAPDHwere used for normalization. Error bars are standard deviations (n = 2). Th

position in WDR44 mRNA in the indicated cell lines. Five H9-reporter and six H9

(F) Methylation patterns of theWDR44 promoter in the indicated cell lines. Each ci

CpGs; white circles, unmethylated CpGs; gray circles, mutated CpGs. Each row

(G) Each dot shows the expression ratio between X-linked genes and autosomal g

for cell lines in which X-inactivation statuswas already examined are used, and the

same lines used in Figure 1. The X/A ratios are also shown in Table S1.

(H) X/A ratios from undifferentiated (Undiff) and differentiated (Diff) hESCs and h

pendent cell lines, with the sex of the donor as indicated under the plot. For prima

The X/A ratios from the undifferentiated hESCs and hiPSCs were also used in Fi

(I) RNA FISH for XIST (red) andPGK1 (green) in endothelial cells differentiated from

hiPSC line K-3F-2 serve as controls.

(J) Graph showing the proportion of cells exhibiting 0, 1, or 2 sites of PGK1 na

(K-3F-2 and 3S-5F-4) hiPSCs. Five to fifteen percent of differentiated cells exhibit

nascent mRNA accumulation.

The y axis in (G) and (H) is in log2 scale.
X-reactivation, the effect of SNLs on MAPK and GSK3b path-

ways should also be investigated.

The timing of transfer to SNLsmay affect X-inactivation status,

as transfer of initial hiPSC colonies directly onto SNLs resulted in

X-reactivation. In contrast, transfer of four Xa/Xi hiPSCs to SNLs

at p15 or later did not promote X-reactivation (data not shown).

Since the reprogramming process continues during expansion

of iPSC clones (Polo et al., 2010), perhaps early exposure to

SNLs during this dynamic stage of reprogramming impacts

X-linked gene expression at later passage. Epigenetic alterations

acquired during culture without SNLs may render the Xi less

responsive to the signals that trigger reactivation.

Implication for Medical Applications
A small number of hiPSC lines fail to reactivate the Xi even on

SNL feeders. While these Xa/Xi lines are indistinguishable from

Xa/Xa lines in differentiation ability and global expression

patterns of autosomal genes, these Xa/Xi lines might not be fully

reprogrammed. In mouse, there is a relationship between

X-reactivation and the ‘‘naive’’ pluripotent state, in which plurip-

otent cells efficiently contribute to chimeric embryos (Fan and

Tran, 2011; Nichols and Smith, 2009; Payer et al., 2011). If the

developmental potential of Xa/Xa hiPSCs is also greater, the

insights obtained from the Kyoto method may be advantageous

for reliable production of quality hiPSCs for future medical appli-

cations. However, when treating X-linked human monogenic

diseases, such as Rett syndrome, Xa/Xi hiPSCs in which the

Xi carries the mutation would be a more attractive source of

material for cell-replacement therapies (Tchieu et al., 2010).

A Model System for Study of X-Inactivation
and X-Reactivation in Humans
The efficient X-reactivation in our hiPSC lines is a useful tool for

elucidating mechanisms of X-reactivation in human cells.

Furthermore, a reliable source of Xa/Xa hiPSC lines poised for

X-inactivation provides tools to study this process. X-reactiva-

tion and X-inactivation have mainly been examined in mouse

systems. However, the mechanisms in human may differ from

those in mouse (Maherali et al., 2007; Okamoto et al., 2011;

Tchieu et al., 2010; van den Berg et al., 2009). The difficulty in ob-

taining human embryos and the unstable X-inactivation status in

hESCs make it extremely difficult to study X-inactivation in
left graph). The expression values in the H9-reporter and expression levels of

e right bar graph shows the percentage of clones that contain T or C at the same

r-3F-2 clones were sequenced.

rcle denotes a CpG sequence in the promoter region. Black circles, methylated

for each cell line shows each sequenced clone for the cell lines.

enes from each cell line. In the left three lanes, deposited microarray data sets

X/A ratios are plotted as controls. The remaining lanes showX/A ratios from the

iPSCs and primary human endothelial cells from biopsy. Colors signify inde-

ry endothelial cells (Primary) only, red and purple are female, and green is male.

gure 1G.

indicated Xa/Xa hiPSC lines. Undifferentiated Xa/Xi hESC line ESI03 and Xa/Xa

scent mRNA accumulation in undifferentiated (K-3F-2; left) and differentiated

tetraploidy, similar to the proportion of these cells that exhibit two sites of PGK1
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Figure 3. Prolonged Culture Promotes X-Reactivation When Propagated on SNL Feeders

(A) X/A ratios from hFib-derived female hiPSC lines at p5 or >p15. Cell lines were generated on SNLs or on non-SNLs. X/A ratios from hiPSC lines in which

X-inactivation status was further examined in Figure 3 by FISH and/or SNP sequencing are shown in green, including three cell lines used in Figure 1 and Figure 2.

Those examined in Figure 4 are shown in orange. X/A ratios from deposited Xa/Xi and Xa/Xa cell lines are shown in red. Cell lines above the upper black line in the

graph have a predicted probability of at least 0.95 of being Xa/Xa, while those below the lower black line have a predicted probability of at least 0.95 of being Xa/Xi

or a 0.05 probability of being Xa/Xa (see more details in Figure S2 and Supplemental Experimental Procedures). The X/A ratios are also shown in Table S1. The

y axis is in log2 scale.

(B) Graph showing the proportion of cells exhibiting 0, 1, or 2 sites of PGK1 nascent mRNA accumulation in Xa/Xi hESCs (ESI03) and three hiPSC lines (K-3F-2,

201B7, and 923S3) on SNLs at >p15. X/A ratios from indicated lines are also shown.

(C) Relative expression levels of XIST and NANOG. RNA from the three hiPSC lines (K-3F-1, K-3F-2, and 3S-5F-4) was extracted at indicated passage number

and analyzed by RT-qPCR. NANOG was used as a pluripotency marker. The Xa/Xi hESC line (ESI03) and female fibroblasts (hFib) from which the hiPSCs were

generated served as controls. The y axis is in logarithmic scale. Expression values of XIST in 3S-5F-4 at p24 and of NANOG in hFib were set as 1.0.

(D) SNP sequencing of two X-linked genes (TSPAN6 and FRMPD4) in one hiPSC line K-3F-2 on SNLs at p3 and p24. Arrows show position of SNPs.

(E) RNA FISH for PGK1 (green) and XIST (red) in hiPSCs derived on hFibs. The hiPSC line 297C1 contains a mixed population of cells that do and do not

express XIST.

(F) Graph showing the proportion of cells with 0, 1, or 2 sites of PGK1 nascent mRNA accumulation in three hiPSC lines generated and cultured on non-SNLs

at >p12. X/A ratios are included beneath the graph.
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humans (Okamoto et al., 2011; van den Berg et al., 2009). Our

hiPSCs may overcome these challenges.

The roleofXISTduringX-inactivation isnot clear inhumancells.

Our hiPSC lines exhibited X-inactivation upon differentiation.
96 Cell Stem Cell 11, 91–99, July 6, 2012 ª2012 Elsevier Inc.
However, there was no detectable XIST expression in the result-

ing purified endothelial cells. While it is unusual for differentiated

cells not to expressXIST, this noncodingRNA is not necessary for

maintenance of X-inactivation (Brown andWillard, 1994) and can
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Figure 4. SNLs Have a Role in X-Reactivation in Female hiPSCs

(A) Diagram outlining experimental design. Related experiments are also shown in Figure S3.

(B and C) X/A ratios of hiPSC lines generated on non-SNLs and cultured as in Figure 4A. ‘‘Before’’ indicates ratios at p9 (B) and p3 (C), and ‘‘After’’ indicates ratios

at >p15 under the conditions indicated in Figure 4A. According to our model, cell lines above the upper black line in the graph have a 0.95 probability of being

Xa/Xa, and those below the lower black line have a 0.95 probability of being Xa/Xi. The y axis is in log2 scale.

(D and F) Normalized XIST expression in hiPSCs before and after transfer to SNLs (D) or before and after transfer to rLIF (F).

(E and H) SNP sequencing for FRMPD4 and TSPAN6 in hiPSCs before (p5) and after (p15) transfer to SNLs (E) or p15 hiPSCs on MEFs or MEFs plus rLIF (H). The

hiPSC line 923M3 exhibits some biallelic expression of both genes at p5 on MEFs, consistent with both genes escaping X-inactivation at low frequency (Carrel

and Willard, 2005).

(G) Graph showing the proportion of cells with 0, 1, or 2 sites of PGK1 nascent mRNA accumulation in indicated conditions.

(I) X-linked gene expression ratios plotted on the X. The probe locations are shown under the X diagram (note that many regions of the X do not have probes). The

ratios of SNL hiPSCs and MEF hiPSCs (top bar chart) or between MEF plus rLIF hiPSCs and MEF hiPSCs (bottom bar chart) in hiPSC 923M2 are shown as bar

charts. Each blue bar shows ratios for each gene analyzed. Blue bars above the orange line show upregulated genes in SNL hiPSCs or MEF plus rLIF hiPSCs

compared with MEF hiPSCs, and below the orange line, they show downregulated genes. Line labeled (a) indicates a region of the X where gene expression on

MEFs and MEFs plus rLIF is comparable, (b) indicates a region where genes are upregulated to a similar extent on SNLs and MEFs plus rLIF, and (c) indicates

a region where genes are upregulated to a lesser degree on MEFs plus rLIF than on SNLs. Location of FRMPD4 is indicated with an arrowhead.
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be epigenetically silenced in cultured cells, including hESCs

(Shen et al., 2008; Silva et al., 2008; Tchieu et al., 2010). Further

analyses of our hiPSCs could provide new insights into regulation

of XIST expression and X-inactivation in humans.

EXPERIMENTAL PROCEDURES

Extended Experimental Procedures are described in the Supplemental

Information.

hiPSC Generation and Cell Culture

All hiPSC lines were generated by established protocols (http://www.cira.

kyoto-u.ac.jp/e/research/protocol.html). All hESC lines were obtained from
the National Stem Cell Bank (WiCell). hiPSC and hESC lines (Table S1) were

maintained using standard protocols (Takahashi et al., 2007), with the excep-

tion that human insulin-like growth factor II (Chemicon; 33 ng/ml) was added

into the ESC medium at Gladstone. Recombinant human LIF (Millipore;

10 ng/ml) was added into the medium as indicated. All karyotyping was per-

formed at StemCell Technology, USA, or the Nihon Gene Research Laborato-

ries, Japan. In all instances, passage 1 (p1) refers to when colonies are initially

picked. SNL feeder cells are available at Health Protection Agency Cul-

ture Collection (http://www.hpacultures.org.uk/products/celllines/generalcell/

detail.jsp?refId = 07032801&collection = ecacc_gc).

Microarray and Bioinformatics

Microarray (Whole Human Genome Microarray 4 3 44K or G3, Agilent)

analyses were performed as described (Takahashi et al., 2007). All gene
Cell Stem Cell 11, 91–99, July 6, 2012 ª2012 Elsevier Inc. 97
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expression values were normalized by the 75% percentile shift method. In

Figures 1B and 1E, all probes of the microarrays were used for heat maps.

In Figures S3A and S3B, only probes, which were used for calculating X/A

ratios in Figures 4B and 4C, were used for heat maps. In Figures 1E, 4I, and

S3C, IGV software (Broad Institute) was used. For Figure 1E, the expression

ratios were calculated with averaged data from female hESC (ESI03, H7, H9,

and H9-reporter) and hiPSC (K-3F-1, K-3F-2, and 3S-5F-4) lines. For Figures

4I and S3C, the expression ratios were calculated using selected data that

were also used for Figures 4B and 4C. The microarray data for the deposited

Xa/Xi and Xa/Xa lines used were downloaded from NCBI GEO (GEO numbers:

GSE21222 and GSE22246).

ACCESSION NUMBERS

We have deposited the microarray data of hiPSC and hESC lines to GEO

DataSets with the accession number GSE34527.

SUPPLEMENTAL INFORMATION

Supplemental Information for this article includes three figures, one table, and

Supplemental Experimental Procedures and can be found with this article

online at doi:10.1016/j.stem.2012.05.019.
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