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Coordinated contraction of the heart is essential for survival and is regulated by the cardiac conduction
system. Contraction of ventricular myocytes is controlled by the terminal part of the conduction system
known as the Purkinje fiber network. Lineage analyses in chickens and mice have established that the
Purkinje fibers of the peripheral ventricular conduction system arise from working myocytes during
cardiac development. It has been proposed, based primarily on gain-of-function studies, that Endothelin
signaling is responsible for myocyte-to-Purkinje fiber transdifferentiation during avian heart develop-
ment. However, the role of Endothelin signaling in mammalian conduction system development is less
clear, and the development of the cardiac conduction system in mice lacking Endothelin signaling has
not been previously addressed. Here, we assessed the specification of the cardiac conduction system in
mouse embryos lacking all Endothelin signaling. We found that mouse embryos that were homozygous
null for both ednra and ednrb, the genes encoding the two Endothelin receptors in mice, were born at
predicted Mendelian frequency and had normal specification of the cardiac conduction system and
apparently normal electrocardiograms with normal QRS intervals. In addition, we found that ednra
expression within the heart was restricted to the myocardium while ednrb expression in the heart was
restricted to the endocardium and coronary endothelium. By establishing that ednra and ednrb are
expressed in distinct compartments within the developing mammalian heart and that Endothelin
signaling is dispensable for specification and function of the cardiac conduction system, this work has
important implications for our understanding of mammalian cardiac development.

© 2014 Elsevier Inc. All rights reserved.

Introduction

and then is propagated rapidly through the bundle of His, the right
and left bundle branches, and the peripheral ventricular conduc-

The cardiac conduction system (CCS) is a specialized, electri-
cally active tissue within the heart that carries electrical impulses
to coordinate atrial and ventricular contraction in a rhythmic
fashion (Mikawa and Hurtado, 2007). The major components of
the CCS include the sinoatrial node (SAN), the atrioventricular
node (AVN), the right and left bundle branches, and the peripheral
ventricular conduction system. The SAN is the primary pacemaker
of the heart and generates the initial electrical impulse that rapidly
spreads through the atria (Bakker et al., 2010; Mikawa and
Hurtado, 2007). The electrical impulse slows as it enters the AVN
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tion system (Bakker et al., 2010; Mikawa and Hurtado, 2007). The
peripheral ventricular conduction system consists of the Purkinje
fiber network, which coordinates ventricular contraction begin-
ning at the apex and propagating to the base, resulting in efficient
emptying of the ventricles (Bakker et al, 2010; Mikawa and
Hurtado, 2007).

Retroviral lineage labeling studies performed in chicken
embryos and fate mapping studies in mouse embryos have estab-
lished that the cells of the peripheral conduction system are
derived from working myocytes (Mikawa et al., 2003; Miquerol
et al., 2011; Munshi, 2012). Purkinje fiber differentiation occurs
around areas of high blood flow and enhanced shear stress
adjacent to the endocardium and near coronary arteries (Gourdie
et al, 1995, 1999; Pennisi et al., 2002). In addition, based on
work performed in the chick system, it has been proposed that
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myocyte-to-Purkinje fiber transdifferentiation occurs via activa-
tion of Endothelin signaling (Gourdie et al., 1998; Kanzawa et al.,
2002; Takebayashi-Suzuki et al., 2000). Endothelin peptides are
potent vasoactive peptides that control numerous aspects of
normal physiological homeostasis, most notably regulating vascu-
lar tone (Barton and Yanagisawa, 2008). There are three Endothe-
lin peptides (ET-1, ET-2, and ET-3) that induce signaling by binding
to Endothelin receptors, which are seven-pass transmembrane G
protein-coupled receptors (Barton and Yanagisawa, 2008;
Kedzierski and Yanagisawa, 2001). Mammals have two Endothelin
receptors, Endothelin receptor A (ETa, encoded by the ednra gene)
and Endothelin receptor B (ETg, encoded by the ednrb gene)
(Kedzierski and Yanagisawa, 2001). In addition to ETs and ETg,
birds encode a third Endothelin receptor ETg,, which is not found
in mice (Kanzawa et al., 2002; Lecoin et al, 1998). Mature
Endothelin peptides are 21 amino acids long but are synthesized
as longer proteins that are subject to multiple steps of proteolytic
processing (Barton and Yanagisawa, 2008; Kedzierski and
Yanagisawa, 2001). Furin proteases digest preproendothelins into
inactive intermediates, referred to as Big Endothelins; Big
Endothelins are further processed to the mature peptides in a
highly specific proteolytic event by one of two Endothelin-specific
proteases, known as Endothelin-converting enzyme-1 (Ece-1) and
-2 (Ece-2) (Barton and Yanagisawa, 2008; Kedzierski and
Yanagisawa, 2001).

In the developing chick embryo, ET, and ETg are reported to be
expressed in cardiomyocytes, while ETg, is expressed in the
developing valve leaflets (Kanzawa et al., 2002). Endothelin
signaling in cardiac myocytes is sufficient for induction of chick
cardiomyocyte transdifferentiation into peripheral Purkinje fibers
(Kanzawa et al., 2002). The model for Endothelin induction of
Purkinje fiber differentiation suggests that shear stress from blood
flow induces expression of Ecel in the endocardium and coronary
endothelium, and Ece-1 in turn processes Big Endothelin-1
expressed in endothelial cells into the active ET-1 peptide, which
then allows endothelial-to-myocardial Endothelin signaling to
occur (Hall et al., 2004; Takebayashi-Suzuki et al., 2000).

Loss-of-function mutations for Endothelin receptor genes in
mice have established an essential role for Endothelin signaling in
neural crest development (Clouthier et al.,, 1998; Hosoda et al.,
1994; Yanagisawa et al., 1998). Inactivation of ednra results in
neonatal lethality due to cranial neural crest-derived craniofacial
and cardiac defects (Clouthier et al., 1998). Inactivation of ednrb
results in pigmentation defects and megacolon due to defects in
derivatives of trunk neural crest, leading to lethality at weaning
(Hosoda et al., 1994). Double knockout of both ednra and ednrb in
mice, resulting in complete loss of Endothelin signaling, was
briefly reported to result in embryonic lethality (Yanagisawa
et al., 1998), but a detailed analysis of those mice has not been
reported. Additionally, conduction system development in the
absence of Endothelin signaling has not been described.

In this study, we examined the expression of ednra and ednrb
genes in the developing mouse heart, and we assessed the
formation and function of the cardiac conduction system in mice
lacking Endothelin signaling. We found that ednra expression
within the heart was restricted to the myocardium and was not
apparent in the endocardium. In contrast, we found that ednrb
expression in the heart was largely restricted to the endocardium
and coronary endothelium. We also found that ednra—/~; ednrb~—/~
knockout embryos, which have no Endothelin signaling, were born
at predicted Mendelian frequency on an outbred background.
Importantly, we observed no alterations in the temporal or spatial
expression pattern of the cardiac conduction system marker trans-
gene CCS-lacZ or in the expression of Gjal or Gja5, markers of
conducting tissue, in the developing heart in ednra—/~: ednrb~/~
knockout embryos when compared to wild type embryos. Similarly,

fetuses lacking Endothelin signaling showed no obvious changes in
the cardiac conduction system function compared to wild type
control fetuses, including no change in PR interval or in the
morphology or duration of the QRS complex, as measured by fetal
electrocardiogram. These data demonstrate that Endothelin signal-
ing is not required for conduction system marker gene expression
or for basic cardiac conduction system function, including the
function of the peripheral ventricular conduction system, and thus
strongly suggest that Endothelin signaling is not required for
cardiac conduction system specification in the mouse. This work
has important implications for our understanding of conduction
system development in mammals.

Materials and methods
Genetically modified mice and mouse embryo electrocardiography

CCS-lacZ transgenic and ednra and ednrb knockout mice have
been described previously (Clouthier et al., 1998; Hosoda et al.,
1994; Rentschler et al., 2001). To generate ednra /~; ednrb—/~
embryos, we intercrossed ednra*/~; ednrb*/~ double heterozy-
gous mice. CCS-lacZ™®°; ednra~'~; ednrb~/~ mice were generated
by crossing CCS-lacZ™®°; ednra™!~; ednrb*/~ to ednra™/!~; ednrb*/~
double heterozygotes.

For embryonic electrocardiography, pregnant mice were
anesthetized with isoflurane when embryos were at embryonic
day (E) 18.5, the peritoneal cavity was opened, and the uterus was
exposed without disrupting its anatomical attachments or blood
supply. Under direct visualization, 2 needle electrodes were placed
through the uterus and yolk sac near the attachment of the upper
limbs and thorax of each embryo. A single lead ECG recording was
obtained in this manner for several seconds per embryo, with
subsequent removal of embryos for genotyping. Signals were
filtered with a signal conditioner (Animal BioAmp, AD Instruments,
Colorado Springs, CO) and sampled at 10 kHz, using a PowerLab
analog-to-digital converter and the Chart5Pro software package (v
5.4.2, AD Instruments). ECG analyses were performed with Chart5-
Pro by an investigator blinded to fetus genotype. Several seconds of
data for each embryo were averaged using automated R-wave
detection, and intervals were measured with electronic calipers
from averaged data. The QRS interval was measured from the onset
of the sharp deflection in the Q wave to the nadir of the S wave.
Data for each genotype were pooled, and statistical analyses were
performed using a two-tailed Student's t-test.

Genotyping was performed by PCR or Southern blot on geno-
mic DNA isolated from yolk sacs or tail biopsies. All experiments
using animals were reviewed and approved by the UCSF Institu-
tional Animal Care and Use Committee and complied with all
institutional and federal guidelines.

X-gal staining and in situ hybridization

To visualize the cardiac conduction system, CCS-lacZ'®° hearts
isolated from mouse embryos at E11.5 and E14.5 were stained
with X-gal to detect B-galactosidase activity as previously
described (Anderson et al., 2004). Following staining, embryonic
hearts were dehydrated in ethanol and then either cleared in a
1:1 solution of benzyl benzoate:benzyl alcohol for whole mount
visualization or sectioned at a thickness of 10 um and counter-
stained with Nuclear Fast Red as previously described (Anderson
et al., 2004).

In situ hybridization was performed as described previously
(Morikawa et al., 2009). The Gjal (connexin 43), Gja5 (connexin
40), and Tnni3 in situ probe plasmids have been previously
described (Koibuchi and Chin, 2007; Ruangvoravat and Lo, 1992;



L.L. Hua et al. / Developmental Biology 393 (2014) 245-254 247

Soufan et al., 2004). The Gjal probe was made by linearizing the
in situ plasmid with BamHI and transcribing with T7 polymerase.
The Gja5 probe was made by linearizing the in situ plasmid with
Spel and transcribing with T7 polymerase. The Tnni3 probe was
made by linearizing with BamHI and transcribing with T3 poly-
merase. The Flk1 in situ probe plasmid was made by amplifying a
712 bp region of the mouse Flk1 cDNA extending from nucleotide
383 to nucleotide 1094 of the 5924 bp Flk1 cDNA and cloning the
resulting product into plasmid pCR2.1 (Life Technologies). Anti-
sense Flk1 probe was made by linearizing plasmid pCR2.1-Flk1
with Notl and transcribing with T7 polymerase. The ednra and
ednrb in situ plasmids were generated by amplifying regions of the
ednra and ednrb genes by PCR from mouse embryonic cDNA by
using primers ednra-F, 5'-ttcatggcccatgactaca-3’ and ednra-R, 5'-
agttggggacaggatgga and ednrb-F, 5'-agaaaagacagcctgcga-3’ and
ednrb-R, 5'-ggttaaacaaagatgttaggact-3’, and cloning the products
into pBluescriptSKII( + ). The ednra and ednrb probes were made by
linearizing the in situ plasmids with Notl and HindlIl, respectively,
and transcribing with T7 polymerase.

RNA isolation and quantitative real-time reverse transcriptase PCR
(qPCR)

RNA was isolated from individual embryonic hearts collected at
E11.5 and prepared using the RNeasy Mini Kit (Qiagen) following the
manufacturer's protocol. RNA was treated with DNasel at 37°C for
1 h, and then cDNA synthesis using the Omniscript RT kit (Qiagen)
was performed. 10 ng of cDNA was used for each qPCR using the
MAXIMA SYBR Green kit (Fermentas). The following primers were
used to amplify Gja5: 5'-agggctgagcttgettctta-3’ and 5'-ttagtgce-
cagtgtcgggaat-3’ and Gjal: 5'-ggtgatgaacagtctgecttt cg-3' and 5'-
gtgagccaagtacaggagtgtg-3'. Expression data were normalized to
gapdh expression as described previously (Schachterle et al., 2012).

Results
Viability of ednra; ednrb double knockout mice

Previously, it was reported that ednra~—/~; ednrb~/~ double
knockout mice displayed 100% lethality at E13.5 when maintained
on an inbred 129SvEv background (Yanagisawa et al., 1998). In
contrast, we maintained ednra®/~; ednrb*/~ double heterozygous
mice on an outbred, mixed background and found that inter-
crosses of double heterozygotes resulted in ednra~/~; ednrb~/~
double knockout mice born at normal Mendelian ratios (Table 1,
2* test=0.65). Importantly, the ednra and ednrb mutant alleles
used here have each been shown previously to completely abolish
responsiveness to Endothelin ligands, establishing that the muta-
tions are true null alleles (Clouthier et al., 1998; Hosoda et al.,
1994). We found that double knockout mice on an outbred
background died shortly after birth with evidence of severe
cyanosis and profound craniofacial closure defects (data not
shown), consistent with the defects reported previously for
ednra—!~ single knockout mice (Clouthier et al., 1998). The survival
of ednra=!~; ednrb~/~ double knockout mice to birth when
maintained on an outbred background is consistent with the
incompletely penetrant embryonic lethality of Ecel-null mice
when maintained on a C57BL/6-129SvEv mixed background
(Yanagisawa et al., 1998) and supports the strong possibility that
additional genes are likely involved in the embryonic lethality
observed in the absence of Endothelin signaling on an isogenic
129SvEv background.

Table 1

Viability of outbred ednra~/~; ednrb~/~ double knockout mice at E9.5, E13.5, and
PO. Mice of all genotypes were recovered at normal Mendelian frequencies at PO,
including ednra=/—; ednrb~/~ double knockouts, y* test=0.65. All ednra=/~;
ednrb~/~ double knockouts were cyanotic at birth and displayed craniofacial
defects, consistent with the defects reported previously for ednra-null mice
(Clouthier et al., 1998).

Gestational ednra—/~; ednrb~/~ Total # of mice Percentage of ednra—/—;
age mice recovered: recovered: (all ednrb~/~ embryos

actual (expected) genotypes) recovered: actual
(expected)
E9.5 4(3) 53 7.5% (6.25%)
E13.5 5 (4) 62 8.1% (6.25%)
Postnatal 4 (4) 63 6.3% (6.25%)

day 0

Distinct expression patterns for ednra and ednrb in the developing
mouse heart

Previous studies of the developing chick heart have reported
that ET4 and ETg are expressed in cardiomyocytes and ETg is
expressed in the developing valve leaflets (Kanzawa et al., 2002).
By comparison, the expression of the genes encoding the Endothe-
lin receptors has been less well described in the developing mouse
heart (Asai et al., 2010; Clouthier et al., 1998; Lee et al., 2003).
Therefore, to examine ednra and ednrb expression in the develop-
ing mouse heart from early development and throughout cardio-
genesis, we performed in situ hybridization analyses of sectioned
wild type mouse embryonic hearts from E8.5 to E14.5 (Fig. 1).

At E8.5, ednra was weakly expressed within cardiomyocytes of
the early common ventricular chamber (Fig. 1A). Expression of
ednra continued in cardiomyocytes at E9.5 and E10.5 (data not
shown), as previously described (Asai et al., 2010; Clouthier et al.,
1998). At E11.5, ednra was expressed in cardiac myocytes in both
the trabecular and compact zones (Fig. 1C). Comparison of ednra
expression to Tnni3 expression on adjacent sections confirmed
that the expression of ednra was restricted to the myocardium
at E11.5 although expression in the myocardium was not as strong
or as uniform as a structural gene like Tnni3 (Fig. 1C and E).
Expression of ednra in compact and trabecular myocardium
continued at E14.5 (Fig. 1G and I). Again, expression of ednra was
compared to the expression of Tnni3 on adjacent sections, which
showed that ednra expression was confined to the myocardium in
a pattern overlapped by the strong expression of the cardiac
specific Tnni3 gene (Fig. 11 and K).

Transcripts for ednrb were not detected in the heart at E8.5;
expression was first observed in the endocardium at E9.5 (Fig. 1B
and data not shown). By E11.5, ednrb became robustly expressed in
the endocardium associated with chamber myocardium (Fig. 1D).
Expression of ednrb was not observed in the endothelial cells of
the inflow or outflow tracts, nor was it observed in the endothelial
cells of the aortic arch arteries (data not shown). ednrb expression
was also observed within the endothelial cells of the coronary
vasculature at E11.5 (Fig. 1D). Comparison of ednrb expression at
E11.5 to the expression of the endothelial marker Flk1 from an
adjacent serial section (Fig. 1F) showed essentially identical
patterns of expression of the two genes (Fig. 1D and F). Expression
of ednrb remained largely restricted to the coronary endothelial
cells and to the endocardium at E14.5 (Fig. 1H and ]) in a pattern
that was overlapping with the pattern of the endothelial marker
Flk1 on an adjacent serial section (Fig. 1L). Importantly, these data
show that throughout cardiogenesis, ednrb was either not detected
or only very weakly observed in the myocardium, at least at the
level of detection by in situ hybridization. The restricted expres-
sion of ednrb to the endothelium and endocardium in the
embryonic mouse heart is in contrast to the expression in the
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A , ednra B 3 ednrb

Fig. 1. Expression patterns of ednra and ednrb in the developing mouse heart. Expression of ednra (A, C, G, and 1) and ednrb (B, D, H, and ]J) was determined by in situ
hybridization and compared on serial transverse sections to the expression of the myocardial marker Tnni3 (E and K) and the endothelial marker Flk1 (F and L) from mouse
embryos collected at E8.5 (A and B), E11.5 (C-F), and E14.5 (G-L). ednra expression was restricted to cardiomyocytes (arrows) in a pattern that was completely overlapped by,
but more punctate than, the expression of Tnni3. ednrb expression was largely restricted to the endocardial cells (arrowheads) lining the atrial and ventricular chambers and
to endothelial cells of the coronary vasculature (asterisks) in a pattern very similar to the pattern of expression of Flk1. a, atrium; LV, left ventricle; myo, myocardium; RA,
right atrium; v, ventricle. The bar equals 100 um in all panels.
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chick heart, where ednrb expression has been reported in cardi-
omyocytes of the atria and left ventricle (Kanzawa et al., 2002;
Takebayashi-Suzuki et al., 2000). Taken together, our data demon-
strate that ednra and ednrb are expressed in different cell types
within the developing mouse heart.

Cardiac conduction system markers exhibit a normal pattern of
expression in the absence of Endothelin signaling

A difficulty in the study of the peripheral cardiac conduction
system is a lack of highly specific molecular markers of the lineage
during development (Christoffels and Moorman, 2009). In this
regard, an important tool for the study of cardiac conduction
system development is the cardiac conduction system (CCS)-lacZ
transgenic mouse line, which expresses p-galactosidase in the
cardiac conduction system, including the ventricular peripheral
Purkinje fiber network (Rentschler et al., 2001). In addition, the
presence of p-galactosidase-positive cells in the right bundle
branch in CCS-lacZ transgenic mice has been directly correlated
with overlapping functional maps of electrical propagation, sup-
porting the notion that CCS-lacZ-expressing cells are functional
components of the nascent cardiac conduction system (Rentschler
et al., 2001). Therefore, to examine the specification of the cardiac
conduction system in the mouse in the presence and absence
of Endothelin signaling, we crossed the CCS-lacZ transgene
into ednra—/~, ednrb=/~, and ednra—/~"; ednrb—/~ knockout
backgrounds (Figs. 2 and 3) and examined the pattern of
p-galactosidase activity as an indicator of conduction system
specification and patterning. At E11.5, the pattern of CCS-lacZ
expression showed minor variation among individual embryos,
but no substantial differences were observed between wild type
and ednra~/~; ednrb~/~ double knockout hearts (Fig. 2A and B).
CCS-lacZ marked the major components of the cardiac conduction
system, including the venous valve adjacent to the sinus node, the
nascent atrioventricular node and the atrioventricular bundle
(Fig. 2A and B), suggesting that these conduction system structures
were specified in the absence of Endothelin signaling.

At E11.5, the Purkinje fibers of the peripheral conduction
system have not fully differentiated, but unorganized conduction
tissue is present, and a contraction sequence has begun to be
established (Rentschler et al., 2001; Sankova et al., 2012); these
early conducting cells in the ventricles express Gjal and Gja5,
which encode connexin 43 and connexin 40, respectively (Bakker
et al., 2010; Delorme et al., 1995; Myers and Fishman, 2003;
Pfenniger et al., 2011; Ruangvoravat and Lo, 1992). Gjal and Gja5
are expressed in the myocardium but become associated with and
are enriched in the developing cardiac conduction system (Bakker
et al.,, 2010; Delorme et al., 1995; Myers and Fishman, 2003;
Ruangvoravat and Lo, 1992). At E11.5, Gja5 (connexin 40) is
expressed broadly in trabecular cardiomyocytes and in some
compact zone cardiomyocytes, and then its expression gradually
restricts to the ventricular conduction system concomitant with a
down regulation in compact layer myocardium (Delorme et al.,
1995). Gjal (connexin 43) is co-expressed with Gja5 in trabecular
myocardium and later is expressed in the Purkinje fibers in the
trabecular myocardium (Giovannone et al., 2012; Gourdie et al.,
1993). Therefore, to further examine the development of the
ventricles and the ventricular conduction system, we also exam-
ined Gja1 and Gja5 expression in wild type and ednra—/~; ednrb /!~
double knockout hearts (Fig. 2C-F). Although some embryo to
embryo variation was observed, the overall spatial expression
patterns of Gjal (connexin 43; Fig. 2C and D) and Gja5 (connexin
40; Fig. 2E and F) were unaffected by the combined loss of ET, and
ETg. Previous studies reported down regulation of Gja5 at E9.5 in
ednra-null mice (Asai et al., 2010). In contrast, we readily detected

Gja5 expression in ednra~/~; ednrb~/~ double null embryos at E11.5
(Fig. 2F).

Because of the previously reported down regulation of Gja5 in
ednra-null hearts, we examined Gja5 expression quantitatively in
wild type and ednra single null hearts by qPCR analysis of RNA
isolated from whole embryonic hearts at E11.5. We did not observe
a statistically significant difference in Gja5 expression between
wild type (mean expression=1.00, SD=0.49, n=4) and ednra—/~
(mean expression=0.86, SD=0.08, n=4) hearts, p=0.598. We
extended these analyses by examining the expression of Gjal
and Gja5 specifically in the right and left ventricles of wild type
and ednra~'~; ednrb~/~ double null embryos (Fig. 2G). To do this,
we removed hearts at E11.5 from wild type and ednra~/—; ednrb—/~
double knockout embryos, removed the atria, and then dissected
the right and left ventricles from each other by pinching the hearts
in half at the point of the interventricular sulcus. The dissected
ventricles were then used for qPCR analyses to examine Gjal
and Gja5 expression levels quantitatively. Although there was
substantial embryo to embryo variation in expression level in
both wild type and ednra=/—; ednrb—/~ double null embryos as
detected by qPCR, importantly, there was no significant difference
in the level of either marker in either the left ventricle or the right
ventricle when comparing wild type and double knockout hearts
(Fig. 2G). Taken together, these results further support the overall
notion that Endothelin signaling in the mouse is not required for
the expression level or pattern of markers of the ventricular
conduction system.

We also examined the expression of CCS-lacZ at E14.5 in wild
type, ednra—/~ and ednrb~/~ single knockout, and ednra~/~;
ednrb~/~ double knockout hearts (Fig. 3). At this stage, the
conduction system is nearly fully differentiated and exhibits a
mature conduction pattern (Rentschler et al., 2001; Sankova et al.,
2012). CCS-lacZ expression was observed in the atrioventricular
node, atrioventricular bundle, left and right bundle branches, and
the Purkinje fiber network in wild type hearts at this stage (Fig. 3A
and A’). Importantly, the pattern and level of p-galactosidase in
hearts from all three mutant genotypes (Fig. 3B-D and B'-D’) were
indistinguishable from the pattern and level of CCS-lacZ in wild
type hearts (Fig. 3A and A’). These observations, taken together
with apparently normal morphology and contraction of ednra~/~;
ednrb~/~ double knockout hearts, strongly suggests that the
conduction system develops and matures normally in the absence
of Endothelin signaling in the mouse.

Intact conduction system function in the absence of Endothelin
signaling

Because of perinatal lethality, it was not possible to assess
peripheral conduction system function in postnatal ednra=/—;
ednrb~/~ animals. We circumvented this problem by recording
electrocardiograms (ECG) from E18.5 ednra—/—; ednrb=/~ fetuses
in utero. Needle electrodes were inserted through the exposed
uterus and through the yolk sac into the right and left upper limb-
thorax junction of each embryo. ECG signals were recorded for
several seconds sequentially from each embryo in a litter (Fig. 4).
ECG data were measured from 7 wild type and 5 ednra=/—;
ednrb~/~ fetuses and PR interval and QRS durations were mea-
sured. Although baseline noise was present and varied from fetus
to fetus, both wild type and ednra—/~; ednrb—/~ double knockout
fetuses were in sinus rhythm (Fig. 4A). Importantly, no gross
differences in the ECG tracings were observed for wild type and
ednra /= ednrb~/~ fetuses (Fig. 4A).

The PR interval reflects transit time through the atrium, AV
node, and AV bundle, while the QRS duration reflects the time
course of ventricular activation and is therefore a direct assess-
ment of conduction through the bundle branches and peripheral
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wild type

wt dko wt dko wt dko wt dko
LV RV LV RV
Gja1 Gjas

Fig. 2. Normal expression of cardiac conduction system markers in ednra~/~; ednrb~/~ knockout mouse hearts at E11.5. Hearts were isolated at E11.5 and transverse sections
were cut to analyze CCS-lacZ (A and B), Gjal (connexin 43) (C and D), and Gja5 (connexin 40) (E and F) expression in embryos with wild type Endothelin receptor genes (A, C,
and E) or in ednra~/~; ednrb~/~ double knockout embryos (B, D, and F). X-gal staining for p-galactosidase in wild type CCS-lacZ (A) and CCS-lacZ; ednra~/~; ednrb~/~ double
knockout (B) embryonic hearts appeared similar. Likewise, RNA in situ hybridization analyses of Gjal (C and D) and Gja5 (E and F) appeared to be nearly identical in wild type
and ednra—/~; ednrb~/~ double knockout embryos. AV, atrioventricular bundle; LA, left atrium; LV, left ventricle; RA, right atrium; RV, right ventricle; vv, ventricular valve.
Representative images are shown. The bar equals 100 um in all panels. (G) qPCR analyses of Gjal and Gja5 expression from isolated right ventricles (RV) and left ventricles
(LV) of wild type (wt) and ednra~/~; ednrb~/~ double knockout (dko) embryos collected at E11.5 showed no significant (n.s.) differences in expression of either marker in
either ventricle. Data are shown as the mean expression level as a percentage of gapdh expression + SEM for 3 samples in each group.
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wt; CCS-lacZ ednra™"; CCS-lacZ ednrb™"; CCS-lacZ ednra”; ednrb™"; CCS-lacZ

Fig. 3. Normal heart morphology and expression of CCS-lacZ in the absence of Endothelin signaling in mouse embryos at E14.5. Hearts were excised at E14.5 and stained
with X-gal. Whole mount, ventral view images are shown in (A-D). Coronal sections, counterstained with Nuclear Fast Red, are shown in A’-D’. Morphology and -
galactosidase activity were comparable in wild type CCS-lacZ (A and A’), CCS-lacZ; ednra/~ (B and B'), CCS-lacZ; ednrb~/~ (C and C’), and CCS-lacZ; ednra~/~; ednrb~/~ (D
and D’) transgenic hearts and all major components of the cardiac conduction system appeared to be present. AVN, atrioventricular node; BB, bundle branches; LBB, left
bundle branch; RBB, right bundle branch; SAN, sinoatrial node. A minimum of three embryos for each genotype was examined; representative images are shown. The bar
equals 100 pm in all panels.
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Fig. 4. Apparently normal conduction system function in the absence of Endothelin signaling. (A) Continuous tracings of single lead fetal electrocardiograms (ECG) from
representative wild type (wt) (top) and ednra—/—; ednrb=/~ (bottom) fetuses showing normal sinus rhythm in both fetuses. Seven wild type and five ednra~/~; ednrb=/~
double knockouts were examined. Tracings from representative fetuses are shown; scale bar, 1 s. (B) Averaged tracings of a representative wt (top) and ednra/~; ednrb~/~
double knockout fetus with P, QRS, and T waves shown. Both wt and ednra~/~; ednrb~/~ double knockout fetuses exhibited similar ECG morphology. 50 ms scale bars are
shown for both recordings. (C) Mean QRS intervals + standard deviation for seven wt and 5 ednra~/~; ednrb—/~ double knockout fetuses are shown. Notably, no significant
difference (p=0.409) was observed between wt and ednra~/~; ednrb~/~ fetuses, suggesting similar conduction properties through the ventricular conduction system.
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ventricular conduction system. The mean PR interval was not
significantly different between wild type and ednra—/~; ednrb~/~
fetuses (wild type, 108.6 + 19.25 ms, n=6; ednra~/~; ednrb=/-,
96.7 + 13.24 ms, n=>5; p=0.638, not significant). Likewise, there
were no morphological differences between wild type and double
mutant QRS complexes (Fig. 4B), nor was there any significant
difference in QRS duration between wild type and ednra '~ ;
ednrb—/~ double mutant fetuses (Fig. 4C). These data strongly
support the notion that the ventricular cardiac conduction system
is specified and functional in the absence of Endothelin signaling.

Discussion

Components of the cardiac conduction system, including the
peripheral Purkinje fiber network originate from the transdiffer-
entiation of cardiomyocytes (Mikawa et al., 2003; Miquerol et al.,
2011; Munshi, 2012). The formation of the peripheral conduction
system has been shown to occur in areas of high hemodynamic
flow, and it has been proposed, based primarily on work per-
formed in the chick system, that myocyte-to-Purkinje fiber trans-
differentiation occurs in response to shear stress (Gourdie et al.,
1995, 1999; Pennisi et al., 2002). Chick embryos exposed to
gadolinium, an antagonist for stretch activated channels, exhibit
reduced expression of Gja5 in the ventricles, and gadolinium-
injected hearts fail to develop a mature conduction activation
sequence, supporting the notion that hemodynamic flow plays an
essential role in Purkinje fiber induction and patterning (Hall et al.,
2004).

Hemodynamic flow has been linked to the activation of Endo-
thelin signaling in multiple contexts (Barton and Yanagisawa,
2008; Hall et al., 2004; Morita et al., 1993; Yoshizumi et al,
1989). The connection of hemodynamic flow to both peripheral
conduction system development and Endothelin signaling
suggests a model whereby hemodynamic flow induces Endothelin
signaling, which in turn, induces Purkinje fiber transdifferentiation
(Mikawa and Hurtado, 2007; Pennisi et al., 2002). This model
has been strongly supported by work performed in the chick
system using gain-of-function approaches. Treatment of embryo-
nic chicken hearts or myocytes with ET-1 induces Purkinje fiber
differentiation (Gourdie et al., 1998; Takebayashi-Suzuki et al.,
2000). Similarly, co-expression of preproendothelin-1 and Ece-1
was also shown to be sufficient to induce ectopic Purkinje fiber
formation in developing chick hearts (Takebayashi-Suzuki et al.,
2000). Continued expression of ET, using retroviral overexpres-
sion extends the period of time for which chicken cardiomyocytes
are permissive to ET-1-induced differentiation of myocytes into
Purkinje fibers (Kanzawa et al., 2002).

Gain-of-function studies in mammalian systems have been less
conclusive about the role of Endothelin signaling in conduction
system development. ET-1 treatment of cultured cardiomyocytes
isolated from embryonic mice or Nkx2-5" cardiac progenitor cells
isolated from embryonic rats induced expression of cardiac con-
duction system markers (Patel and Kos, 2005; Zhang et al., 2012).
Similarly, pacemaker cells with distinct morphology and fast
beating rate could be induced by treatment of embryonic stem
cells differentiated into cardiac myocytes with ET-1 (Gassanov
et al., 2004). On the other hand, CCS-lacZ hearts cultured ex vivo
showed little or no ectopic B-galactosidase expression when
treated with ET-1 (Rentschler et al.,, 2002). Thus, gain-of-function
experiments in mice have not resolved the sufficiency of Endothe-
lin signaling for Purkinje fiber induction. Surprisingly, an analysis
of conduction system development has not been reported in
previous mouse genetic studies in which Endothelin signaling
had been abolished in the heart (Asai et al., 2010; Clouthier et al.,
1998; Yanagisawa et al., 1998, 2000). Here, we found that complete

abrogation of Endothelin signaling did not affect the initial
specification or patterning of the conduction system as highlighted
by the expression of CCS-lacZ and expression of Gjal and Gja5,
nor did loss of Endothelin signaling disrupt conduction system
function in Endothelin signaling-null fetuses, which exhibited
PR intervals and QRS durations indistinguishable from wild type
fetuses.

We also found that complete loss of Endothelin signaling on an
outbred background did not result in embryonic demise and that
ednra=/~; ednrb~/~ double knockout mice survived to birth at
predicted Mendelian frequency (Table 1). Previous studies briefly
reported embryonic demise at approximately E13.5 in the absence
of Endothelin signaling (Yanagisawa et al., 1998). The survival of
fetuses on an outbred background supports the idea that addi-
tional genes are involved in the observed embryonic lethality
when Endothelin signaling is abrogated on an inbred background.
Alternatively, it is possible that other genes contribute to survival
of ednra~/~; ednrb=/~ double knockout fetuses on an outbred
background, but if this were the case, one might expect partially
penetrant embryonic lethality or underrepresentation of ednra=/~
ednrb~/~ double knockout fetuses when maintained on a mixed,
outbred background. However, underrepresentation of double
knockouts was not observed in our studies (Table 1).

The studies presented here support the idea that birds and
mammals may have different requirements for Endothelin signal-
ing in cardiac conduction system development. Our data demon-
strate that Endothelin signaling is dispensable for cardiac
conduction system specification in the mouse. On the other hand,
gain-of-function experiments strongly suggest that Endothelin
signaling is important for the development of the avian conduc-
tion system (Gourdie et al., 1998; Hall et al., 2004; Kanzawa et al.,
2002; Takebayashi-Suzuki et al., 2000). The apparent difference in
the role of Endothelin signaling in conduction system develop-
ment between mammals and birds may simply reflect the differ-
ences between gain-of-function and loss-of function approaches.
Although it is clear that Endothelin signaling is capable of inducing
myocyte-to-Purkinje fiber transdifferentiation in the chick, it may
not be required for that process, and loss-of-function studies have
not been performed in an avian system to rigorously test the
requirement for Endothelin signaling in development of the
peripheral conduction system. On the other hand, it is possible
that birds and mammals may have evolved distinct signaling
mechanisms for the specification of the peripheral ventricular
conduction system. In this regard, hemodynamic forces may play
different roles in peripheral conduction system development in
birds and mammals. Ventricular conduction system development
in birds occurs in association with hemodynamic forces (Gourdie
et al,, 1995, 1999; Pennisi et al., 2002). In contrast, Purkinje fiber
differentiation in the mouse appears to occur prior to the onset of
high-pressure circulation (Rentschler et al., 2002), and blood flow
is dispensable for formation of atrioventricular conduction tissue
in zebrafish (Milan et al., 2006). Since Endothelin signaling is well-
established as a shear/flow-responsive signaling system (Hall
et al., 2004; Morita et al., 1993; Yoshizumi et al., 1989), it may be
critical for birds to have evolved (or maintained) a signaling
system capable of transducing mechanical information in response
to hemodynamic forces from the endocardium and arterial vascu-
lature to the myocardium, whereas this may be dispensable
in mice.

Neuregulin signaling can also induce cardiomyocytes to express
some conduction system markers and has been implicated in
Purkinje fiber transdifferentiation. Neuregulin signaling is required
in mice for formation of trabecular myocardium, the functional
and structural precursor cells of Purkinje fibers (Gassmann et al.,
1995; Hertig et al., 1999; Lee et al., 1995; Meyer and Birchmeier,
1995). Similarly, morpholino knock down studies suggested an
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involvement of neuregulin for the development of atrioventricular
conduction tissue in zebrafish (Milan et al., 2006). Rentschler et al.
(2002) showed that Nrg-1 treatment of CCS-lacZ transgenic hearts
explanted at E9.5 resulted in conversion of cardiomyocytes to a
cardiac conduction cell phenotype. Other studies in which Nkx2-5+
cardiac progenitor cells were treated with Nrg-1 also found induc-
tion of cardiac conduction system markers (Patel and Kos, 2005). In
contrast, embryonic stem cells differentiated in vitro into cardio-
myocytes did not transdifferentiate in response to Nrg-1 treatment
(Gassanov et al., 2004). Although we did not examine neuregulin
signaling in the present study, our work demonstrates the dispen-
sability of Endothelin signaling for murine cardiac conduction
system specification and function, suggesting that another signaling
system, perhaps neuregulin, may be essential for cardiac conduction
system development in mice. A clearer understanding of neuregulin
and other signaling pathways during early heart development is
required to define the inductive mechanisms involved in mamma-
lian cardiac conduction system specification and maturation.
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