Thymosin β 4 is Cardioprotective After Myocardial Infarction

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Annals of the New York Academy of Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>draft</td>
</tr>
<tr>
<td>Volume Title:</td>
<td>Thymosins in Health and Disease</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Srivastava, Deepak; Gladstone Institute of Cardiovascular Disease, UCSF, Dept. of Pediatrics and Biochemistry & Biophysics Saxena, Ankur; Harvard Medical School, Genetics DiMaio, J. Michael; University of Texas Southwestern Medical Center, Cardiothoracic Surgery Bock-Marquette, Ildiko; University of Texas Southwestern Medical Center, Cardiothoracic Surgery</td>
</tr>
<tr>
<td>Keywords:</td>
<td>thymosin beta 4, cardiac repair, Integrin Linked Kinase</td>
</tr>
</tbody>
</table>

http://www.nyas.org/forthcoming
Thymosin β4 is Cardioprotective After Myocardial Infarction

Deepak Srivastava¹, Ankur Saxena², J. Michael DiMaio³, and Ildiko Bock-Marquettè³

¹Gladstone Institute of Cardiovascular Disease and Department of Pediatrics, University of California San Francisco, San Francisco, California, USA

²Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA

³Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center

Address correspondence to:

Deepak Srivastava
Gladstone Institute of Cardiovascular Disease
1650 Owens Street
San Francisco, CA 94158

Ph: 415-734-2716
Fax: 415-355-0141
Email: dsrivastava@gladstone.ucsf.edu
Summary

Heart disease is a leading cause of death in newborns and in adults. Efforts to promote cardiac repair by introduction or recruitment of exogenous stem cells hold promise but typically involve isolation and introduction of autologous or donor progenitor cells. We have found that the G-actin sequestering peptide thymosin β4 promotes myocardial and endothelial cell migration in the embryonic heart and retains this property in post-natal cardiomyocytes. Survival of embryonic and postnatal cardiomyocytes in culture was also enhanced by thymosin β4. We found that thymosin β4 formed a functional complex with PINCH and Integrin Linked Kinase (ILK), resulting in activation of the survival kinase Akt/PKB, which was necessary for thymosin β4’s effects on cardiomyocytes. After coronary artery ligation in mice, thymosin β4 treatment resulted in upregulation of ILK and Akt activity in the heart, enhanced early myocyte survival and improved cardiac function. These findings suggest that thymosin β4 promotes cardiomyocyte and endothelial migration, survival and repair and may be a novel therapeutic target in the setting of acute myocardial damage.
Introduction

Coronary artery disease results in acute occlusion of cardiac vessels leading to loss of dependent myocardium. Such events are one of the leading causes of death in the Western world. Because the heart is incapable of sufficient muscle regeneration, survivors of myocardial infarctions typically develop chronic heart failure, with over ten million cases in the United States alone. While more commonly affecting adults, heart disease in children is the leading non-infectious cause of death in the first year of life and often involves abnormalities in cardiac cell specification, migration, or survival.

Recent evidence suggests that a population of extracardiac or intracardiac stem cells may contribute to maintenance of the cardiomyocyte population under normal circumstances. While the stem cell population may maintain a delicate balance between cell death and cell renewal, it is insufficient for myocardial repair after acute coronary occlusion. Introduction of isolated stem cells may improve myocardial function, but this approach has been controversial, and requires isolation of autologous stem cells or use of donor stem cells along with immunosuppression. Efforts to efficiently coax pluripotent embryonic stem cells into a cardiomyocyte lineage remain unsuccessful, although discovery of pathways involved in early cardiac commitment may reveal methods to encourage cardiac differentiation. Technical hurdles of stem cell delivery and differentiation have thus far prevented broad clinical application of cardiac regenerative therapies.

Regulatory pathways involved in cardiac development may have utility in reprogramming cardiomyocytes to aid in cardiac repair. In our studies of genes expressed during cardiac morphogenesis, we found that the forty-three amino acid peptide thymosin β4 was expressed in the developing heart. Thymosin β4 has numerous functions, with the most
prominent involving sequestration of G-actin monomers and subsequent effects on actin-cytoskeletal organization necessary for cell motility, organogenesis, and other cell biological events11-13. Domain analyses indicate that β-thymosins can affect actin assembly based on their carboxy-terminal affinity for actin14. Although thymosin β4 promotes skin and corneal wound healing through its effects on cell migration, angiogenesis, inhibition of scar formation, and possibly cell survival15-17, the precise molecular mechanism through which it functions and its potential role in solid organ wound healing remains unknown. We have found that thymosin β4 can activate the survival kinase Akt and can play a potent role in protecting cardiac muscle from death after ischemic damage as occurs in the setting of a myocardial infarction18. These results are described below.

Secreted Thymosin β4 Stimulates Cardiac Cell Migration and Survival

Although thymosin β4 is found in the cytosol and nucleus and functions intracellularly12, we found that conditioned medium of Cos1 cells transfected with myc-tagged thymosin β4 contained thymosin β4 detectable by Western blot, consistent with previous reports of thymosin β4 secretion and presence in wound fluid17, 19, 20. Upon expression of thymosin β4 on the surface of phage particles added extracellularly to embryonic cardiac explants, we found that an antiphage antibody coated the cell surface and was ultimately detected intracellularly in the cytosol and nucleus while control phage was not detectable18. These data indicated that secreted thymosin β4 may be internalized into cells, as previously suggested, although the mechanism of cellular entry remains to be determined.

To test the effects of secreted thymosin β4 on cardiac cell migration, we took advantage of an embryonic heart explant system designed to assay cell migration and transformation events
on a three-dimensional collagen gel21. In this assay, explants of adjacent embryonic myocardium and endocardium from valve-forming regions are placed on a collagen gel with the endocardium adjacent to the collagen. Signals from cardiomyocytes induce endocardial cell migration, but myocardial cells do not normally migrate onto the collagen in significant numbers (Fig. 1a,b). In contrast, upon addition of thymosin β4 to the primary explants, we observed a large number of spontaneously beating, cardiac muscle actin-positive cells that had migrated away from the explant (Fig. 1c,d, p<.0001).

Similar to embryonic cardiomyocytes, we found that the migrational distance of thymosin β4-treated neonatal cardiomyocytes was significantly increased compared to control. In addition to thymosin β4 ’s effects on myocardial cell migration, we observed a similar effect on endothelial migration in the embryonic heart explant assay.

Primary culture of neonatal cardiomyocytes typically survived for approximately one to two weeks with some cells beating up to two weeks when grown on laminin-coated slides in our laboratory. Surprisingly, neonatal cardiomyocytes survived significantly longer upon exposure to thymosin β4 with rhythmically contracting myocytes visible for up to 28 days18.

Thymosin β4 Activates ILK and Akt/Protein Kinase B

To investigate the potential mechanisms by which thymosin β4 might be influencing cell migration and survival events, we searched for thymosin β4 interacting proteins. Using phage display, we found that PINCH, a LIM domain protein, was most consistently isolated in an interaction screen with thymosin β4 and this was confirmed by co-immunoprecipitation. PINCH and integrin linked kinase (ILK) interact directly with one another and indirectly with the actin cytoskeleton as part of a larger complex involved in cell-extracellular matrix interactions known
as the focal adhesion complex. PINCH and ILK are required for cell motility22, 23 and for cell survival, in part by promoting phosphorylation of the serine-threonine kinase Akt/protein kinase B, a central kinase in survival and growth signaling pathways22-25. All three proteins could be isolated as a complex and we have demonstrated that thymosin β4 induces activation of signaling events downstream of ILK, particularly, phosphorylation and activation of Akt18.

Because recruitment of ILK to the focal adhesion complex is important for its activation, we assayed the effects of thymosin β4 on ILK localization and expression. ILK detection by immunocytochemistry was markedly enhanced around the cell edges after treatment of embryonic heart explants or C2C12 myoblasts with synthetic thymosin β4 protein or thymosin β4-expressing plasmid (Fig. 2a). Western analysis indicated a modest increase in ILK protein levels in C2C12 cells, suggesting that the enhanced immunofluorescence may be in part due to altered localization by thymosin β4 (Fig. 2b). We found that upon thymosin β4 treatment of C2C12 cells, ILK was functionally activated, evidenced by increased phosphorylation of its known substrate Akt24, using a phospho-specific antibody to serine 473 of Akt (Fig. 2b), while total Akt protein was unchanged. The effects of thymosin β4 in vitro could be inhibited using an ILK inhibitor suggesting that the survival effects on cardiomyocytes was likely via Akt activation.

Thymosin β4 Promotes Cell Survival after Myocardial Infarction and Improves Cardiac Function

Because of thymosin β4’s effects on survival and migration of cardiomyocytes cultured in vitro and phosphorylation of Akt, we tested whether thymosin β4 might aid in cardiac repair in vivo after myocardial damage. We created myocardial infarctions in fifty-eight adult mice by
coronary artery ligation and treated half with systemic, intracardiac, or systemic plus intracardiac thymosin β4 immediately after ligation and the other half with PBS (Fig. 3). Intracardiac injections were done with collagen (control) or collagen mixed with thymosin β4. All forty-five mice that survived two weeks later were interrogated for cardiac function by random-blind ultrasonagrapy at 2 and 4 weeks after infarction by multiple measurements of cardiac contraction. Four weeks after infarction, left ventricles of control mice had a mean fractional shortening of 23.2 +/– 1.2% (n=22, 95% confidence interval); in contrast, mice treated with thymosin β4 had a mean fractional shortening of 37.2 +/– 1.8% (n=23, 95% confidence intervals; p<.0001) (Fig. 3a). As a second measure of ventricular function, two-dimensional echocardiographic measurements revealed that the mean fraction of blood ejected from the left ventricle (ejection fraction) in thymosin β4 treated mice was 57.7 +/– 3.2% (n=23, 95% confidence interval; p<.0001) compared to a mean of 28.2 +/– 2.5% (n=22, 95% confidence interval) in control mice after coronary ligation (Fig. 3b). The greater than 60% or 100% improvement in cardiac fractional shortening or ejection fraction, respectively, suggested a significant improvement with exposure to thymosin β4, although cardiac function remained depressed compared to sham operated animals (~60% fractional shortening; ~75% ejection fraction). Finally, the end diastolic dimensions (EDD) and end systolic dimensions (ESD) were significantly higher in the control group, indicating that thymosin β4 treatment resulted in decreased cardiac dilation after infarction, consistent with improved function. Remarkably, the degree of improvement when thymosin β4 was administered systemically through intraperitoneal injections or only locally within the cardiac infarct was not statistically different, suggesting that the beneficial effects of thymosin β4 likely occurred through a direct effect on cardiac cells rather than through an extracardiac source.
To determine the manner in which thymosin β4 improved cardiac function, we examined multiple serial histologic sections of hearts treated with or without thymosin β4. Trichrome stain at three levels of section revealed that the size of scar was reduced in all mice treated with thymosin β4 but was not different between systemic or local delivery of thymosin β4 (Fig. 4a-f), consistent with the echocardiographic data above. Quantification of scar volume using six levels of sections through the left ventricle of a subset of mice demonstrated significant reduction of scar volume in thymosin β4 treated mice (Fig. 4g, p<.05). We did not detect significant cardiomyocyte proliferation or death at three, six, eleven or fourteen days after coronary ligation in PBS or thymosin β4 treated hearts. However, twenty-four hours after ligation we found a striking decrease in cell death by TUNEL assay in thymosin β4 treated cardiomyocytes (Fig. 4). TUNEL postive cells that were also myocytes were rare in the thymosin β4 group but abundant in the control hearts. Consistent with this observation, we found that the left ventricle fractional shortening three days after infarction was 39.2 +/- 2.34% (n=4, 95% confidence interval) with intracardiac thymosin β4 treatment compared to 28.8 +/- 2.26% (n=4, 95% confidence interval) in controls (p<.02); ejection fraction was 64.2 +/- 6.69% or 44.7 +/- 8.4%, respectively (p<.02), suggesting early protection by thymosin β4. The decreased scar volume and preserved function of thymosin β4 treated mice were likely due to early preservation of myocardium after infarction through thymosin β4’s effects on survival of cardiomyocytes.

By western blot we found that the level of ILK protein was increased in heart lysates of mice treated with thymosin β4 after coronary ligation compared with PBS treated mice (Fig. 4). Correspondingly, phospho-specific antibodies to Akt-S473 revealed an elevation in the amount of phosphorylated Akt-S473 in mice treated with thymosin β4 (Fig. 4), consistent with the effects of thymosin β4 on ILK described earlier. These observations in vivo were consistent with the
effects of thymosin β4 on cell migration and survival demonstrated in vitro and suggest that activation of ILK and subsequent stimulation of Akt may in part explain the enhanced cardiomyocyte survival induced by thymosin β4, although it is unlikely that a single mechanism is responsible for the full repertoire of thymosin β4’s cellular effects. Indeed, we have found that thymosin β4 is also a potent stimulator of neoangiogenesis in the hypoxic myocardium following myocardial infarction (I. Bock-Marquette et al., unpublished observations). The combination of cytoprotection followed by angiogenesis likely underlies its potent effects. The recent discovery that thymosin β4 can regulate coronary angiogenesis is consistent with this notion. In addition, thymosin β4 is highly upregulated in the heart of adult zebrafish during damage-induced regeneration, suggesting that this protein may be playing a role in a regenerative process after injury.

The early effect of thymosin β4 in protecting the heart from cell death was reminiscent of myocytes that are able to survive hypoxic insult by “hibernating”. While the mechanisms underlying hibernating myocardium are unclear, alterations in metabolism and energy usage appear to promote survival of cells. Future studies will determine if thymosin β4 alters cellular properties in a manner similar to hibernating myocardium, possibly allowing time for endothelial cell migration and new blood vessel formation. Indeed, recent studies have shown that thymosin β4 is highly secreted by marrow-derived progenitor cells that appear to have beneficial paracrine effects on the heart after coronary occlusion in rodents. It will be interesting to determine if thymosin β4 is one of the critical paracrine factors from such cells that serve to improve cardiac function post-myocardial infarction. Given the findings here, the utility of thymosin β4 for healing after cardiac injury holds promise and warrants further pre-clinical investigation.
Figure Legends

Fig. 1. Thymosin β4 promotes cardiac cell migration and survival. (a–d) Mouse E11.5 cardiac outflow tract explants stained with anti-muscle actin antibody (green) after PBS (a) or thymosin β4 (c) treatment. (b) and (d) are DAPI stains of (a) and (c), respectively. Bars represent 500µm.

Fig. 2. Thymosin β4 forms a functional complex with PINCH and Integrin Linked Kinase (ILK) resulting in phosphorylation of Akt. (a) Immunocytochemistry with anti-ILK antibody (green) and DAPI (blue) marking nuclei after thymosin β4 treatment of embryonic cardiac explants or C2C12 myoblasts. (b) Western blot of C2C12 cells treated with thymosin β4 protein or transfected with thymosin β4-expressing plasmid (TB4tr) using anti-ILK antibody, phospho-specific antibody to Akt-S473 or antibody to Akt. Loading controls with GAPDH levels are shown.

Fig. 3. Thymosin β4 treatment after coronary ligation improves myocardial function in vivo. (a,b) Distribution of left ventricular fractional shortening (a) or ejection fraction (b) at two and four weeks after coronary ligation with (n=23) or without (n=22) thymosin β4 treatment. Values are averages of multiple echocardiographic measurements of each mouse with mean of each cohort indicated by a bar.

Fig. 4. Thymosin β4 promotes survival and alters scar formation after coronary artery ligation in mice. (a–f), Representative trichrome stain of transverse heart sections at
comparable levels 14 days after coronary ligation and PBS \((a,b)\) treatment or thymosin \(\beta 4\) \((TB4)\) treatment delivered intraperitoneally \((IP)\) \((c,d)\) or intracardiac \((IC)\) \((e,f)\). \((b), (d)\) and \((f)\) are higher magnifications of \((a), (c)\) and \((e)\), respectively. Collagen in scar is indicated in blue and myocytes in red. Images are typical of twenty separate animals examined histologically. \((g)\) Estimated scar volume of hearts after coronary ligation and PBS or TB4 treatment calculated from six levels of section for six mice in blinded fashion. Bars indicate standard deviation at 95% confidence limits. \(*p<.02.\) \((h,i)\), TUNEL positive cells (bright green) twenty-four hours after TB4 or PBS treatment demonstrating rare positive cells in TB4 sections. \((j,k)\) DAPI stain of nuclei of \((h,i)\). \((l,m)\) Higher magnification of TUNEL positive nuclei (bright green) double-labeled with anti-muscle actinin antibody (red) to mark cardiomyoctyes. TUNEL positive cells co-stained with muscle actin were rare in the TB4 treated hearts but abundant in the control hearts. \((n)\) Western blot using anti-ILK antibody, phospho-specific antibody to Akt-S\(^{473}\) or antibody to Akt on heart lysates after coronary ligation and treatment with PBS or TB4. Loading controls with GAPDH levels are shown.

References

Acknowledgements

D.S. was supported by grants from the NHLBI/NIH, March of Dimes Birth Defects Foundation, and American Heart Association. I.B is supported by a grant from the NICHD/NIH.
Fig. 1. Thymosin β4 promotes cardiac cell migration and survival. (a–d) Mouse E11.5 cardiac outflow tract explants stained with anti-muscle actin antibody (green) after PBS (a) or thymosin β4 (c) treatment. (b) and (d) are DAPI stains of (a) and (c), respectively. Bars represent 500 μm. 77x51mm (550 x 550 DPI)
Fig. 2. Thymosin β 4 forms a functional complex with PINCH and Integrin Linked Kinase (ILK) resulting in phosphorylation of Akt. (a) Immunocytochemistry with anti-ILK antibody (green) and DAPI (blue) marking nuclei after thymosin β 4 treatment of embryonic cardiac explants or C2C12 myoblasts. (b) Western blot of C2C12 cells treated with thymosin β 4 protein or transfected with thymosin β 4-expressing plasmid (TB4tr) using anti-ILK antibody, phospho-specific antibody to Akt-S473 or antibody to Akt. Loading controls with GAPDH levels are shown.
Fig. 3. Thymosin β4 treatment after coronary ligation improves myocardial function in vivo. (a,b) Distribution of left ventricular fractional shortening (a) or ejection fraction (b) at two and four weeks after coronary ligation with (n=23) or without (n=22) thymosin β4 treatment. Values are averages of multiple echocardiographic measurements of each mouse with mean of each cohort indicated by a bar.

125x66mm (550 x 550 DPI)
Fig. 4. Thymosin β4 promotes survival and alters scar formation after coronary artery ligation in mice. (a-f), Representative trichrome stain of transverse heart sections at comparable levels 14 days after coronary ligation and PBS (a,b) treatment or thymosin β4 (TB4) treatment delivered intraperitoneally (IP) (c,d) or intracardiac (IC) (e,f). (b), (d) and (f) are higher magnifications of (a), (c) and (e), respectively. Collagen in scar is indicated in blue and myocytes in red. Images are typical of twenty separate animals examined histologically. (g) Estimated scar volume of hearts after coronary ligation and PBS or TB4 treatment calculated from six levels of section for six mice in blinded fashion. Bars indicate standard deviation at 95% confidence limits. *p<.02. (h,i), TUNEL positive cells (bright green) twenty-four hours after TB4 or PBS treatment demonstrating rare positive cells in TB4 sections. (j,k) DAPI stain of nuclei of (h,i). (l,m) Higher magnification of TUNEL positive nuclei (bright green) double-labeled with anti-muscle actin antibody (red) to mark cardiomyocytes. TUNEL positive cells co-stained with muscle actin were rare in the TB4 treated hearts but abundant in the control hearts. (n) Western blot using anti-ILK antibody, phospho-specific antibody to Akt-S473 or antibody to Akt on heart lysates after coronary ligation and treatment with PBS or TB4. Loading controls with GAPDH levels are shown.

127x93mm (300 x 300 DPI)